From Necessity to Pleasure: The Impact of Hedonic Motivation and Performance Expectancy on Acceptance of Online Grocery Shopping Apps in Germany
Main Article Content
Keywords
online grocery shopping apps, German retail, UTAUT2 model, behavioral intention
Abstract
This study investigates key factors influencing German consumers’ acceptance of online grocery shopping (OGS) apps. Despite the growing popularity of e-commerce, research on OGS app adoption in Germany remains limited. We applied the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model to examine factors affecting acceptance and behavioral intention to use OGS apps. A quantitative approach with a convenience sample was employed in Germany. Data analysis involved principal component analysis followed by multiple linear regression analyses using IBM SPSS 28. Results showed that performance expectancy, hedonic motivation, and previous use of OGS apps significantly influenced behavioral intention. The UTAUT2 model’s predictive probability was highest when considering control variables such as gender, age, and previous app use. Our findings contribute to understanding OGS app adoption in Germany and suggest practical implications, including expanding delivery zones to rural areas. This research addresses the knowledge gap in OGS app acceptance in Germany and provides insights for researchers and practitioners in the food retail sector.
References
Al-nawayseh, M. K., Alnabhan, M. M., Al-Debei, M. M., & Balachandran, W. (2013). An Adaptive Decision Support System for Last Mile Logistics in E-Commerce: A Study on Online Grocery Shopping. International Journal of Decision Support System Technology (IJDSST), 5(1), 40–65. https://doi.org/10.4018/jdsst.2013010103.
Asgari, H., Azimi, G., Titiloye, I., & Jin, X. (2023). Exploring the influences of personal attitudes on the intention of continuing online grocery shopping after the COVID-19 pandemic. Travel Behaviour and Society, 33, 100622. https://doi.org/10.1016/j.tbs.2023.100622.
Backhaus, K., Erichson, B., & Weiber, R. (2015). Fortgeschrittene Multivariate Analysemethoden: Eine anwendungsorientierte Einführung (3., überarb. u. aktual. Aufl. 2015). Gabler.
Braun, S., & Osman, D. (2024). Online grocery shopping adoption versus non-adoption among the over-50s in Germany. Electronic Commerce Research, 24(2), 825–862. https://doi.org/10.1007/s10660-024-09840-7.
Brown, S. A., & Venkatesh, V. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29(3), 399–426. https://doi.org/10.2307/25148690.
Brüggemann, P., Martinez, L. F., Pauwels, K., & Westland, J. C. (2024). Introduction: Online grocery shopping – current and future challenges and opportunities. Electronic Commerce Research, 24(2), 711–713. https://doi.org/10.1007/s10660-024-09875-w.
Bundesverband E-Commerce und Versandhandel Deutschland (BEVH) e.V. (2024). Umsatz mit Lebensmitteln im deutschen Online-Handel bis 2024. Statista. https://de.statista.com/statistik/daten/studie/894997/umfrage/umsatz-mit-lebensmitteln-im-deutschen-online-handel/.
Chan, H.-L., Cheung, T.-T., Choi, T.-M., & Sheu, J.-B. (2023). Sustainable successes in third-party food delivery operations in the digital platform era. Annals of Operations Research, 1–37. https://doi.org/10.1007/s10479-023-05266-w.
Cleff, T. (2015). Deskriptive Statistik und Explorative Datenanalyse: Eine computergestützte Einführung mit Excel, SPSS und STATA (3., überarbeitete und ergänzte Auflage). Springer Gabler.
Deaux, K., & Lewis, L. L. (1984). Structure of gender stereotypes: Interrelationships among components and gender label. Journal of Personality and Social Psychology, 46(5), 991–1004. https://doi.org/10.1037/0022-3514.46.5.991.
Dillahunt, T. R., Simioni, S., & Xu, X. (2019). Online Grocery Delivery Services: An Opportunity to Address Food Disparities in Transportation-scarce Areas. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3290605.3300879.
Driediger, F., & Bhatiasevi, V. (2019). Online grocery shopping in Thailand: Consumer acceptance and usage behavior. Journal of Retailing and Consumer Services, 48, 224–237. https://doi.org/10.1016/j.jretconser.2019.02.005.
Frank, D.-A., & Peschel, A. O. (2020). Sweetening the Deal: The Ingredients that Drive Consumer Adoption of Online Grocery Shopping. Journal of Food Products Marketing, 26(8), 535–544. https://doi.org/10.1080/10454446.2020.1829523.
Gillespie, R., DeWitt, E., Trude, A. C. B., Haynes-Maslow, L., Hudson, T., Anderson-Steeves, E., Barr, M., & Gustafson, A. (2022). Barriers and Facilitators of Online Grocery Services: Perceptions from Rural and Urban Grocery Store Managers. Nutrients, 14(18), Article 18. https://doi.org/10.3390/nu14183794.
Gruntkowski, L. M., & Martinez, L. F. (2022). Online Grocery Shopping in Germany: Assessing the Impact of COVID-19. Journal of Theoretical and Applied Electronic Commerce Research, 17(3), Article 3. https://doi.org/10.3390/jtaer17030050.
Gupta, U., & Kumar, N. (2023). Analysing the Impact of Perceived Risk, Trust and Past Purchase Satisfaction on Repurchase Intentions in Case of Online Grocery Shopping in India. Global Business Review. https://doi.org/10.1177/09721509231178989.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE.
Handelsverband Deutschland (HDE) e.V. (2024). Anteil des Online-Umsatzes mit Lebensmitteln am Einzelhandelsumsatz in Deutschland in den Jahren 2014 bis 2023. Statista. https://de.statista.com/statistik/daten/studie/744285/umfrage/onlineanteil-von-lebensmitteln-am-einzelhandel-in-deutschland/.
Hansson, L., Holmberg, U., & Post, A. (2022). Reorganising grocery shopping practices – the case of elderly consumers. The International Review of Retail, Distribution and Consumer Research, 32(4), 351–369. https://doi.org/10.1080/09593969.2022.2085137.
Harborth, D., & Pape, S. (2018). German Translation of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) Questionnaire (SSRN Scholarly Paper 3147708). Social Science Research Network. https://doi.org/10.2139/ssrn.3147708.
Hartmann, T., & Reinecke, L. (2013). Skalenkonstruktion in der Kommunikationswissenschaft (pp. 41–60). https://doi.org/10.1007/978-3-531-18776-1_3.
Hassan, S., Rashid, R., & Li, F. (2015). Utilising Modified UTAUT to Understand Students’ Online Shopping Behaviour: A Case of E-Retail Co-Operative Website in Malaysia. Journal of Electronic Commerce in Organizations (JECO), 13(4), 74–90. https://doi.org/10.4018/JECO.2015100104.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43, 115–135. https://doi.org/10.1007/s11747-014-0403-8.
Indrawati, I., Ramantoko, G., Widarmanti, T., Aziz, I. A., & Khan, F. U. (2022). Utilitarian, hedonic, and self-esteem motives in online shopping. Spanish Journal of Marketing - ESIC, 26(2), 231–246. https://doi.org/10.1108/SJME-06-2021-0113.
Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis: International Edition (6th edition). Pearson.
Klepek, M., & Bauerová, R. (2020). Why do retail customers hesitate for shopping grocery online? Technological and Economic Development of Economy, 26(6), Article 6. https://doi.org/10.3846/tede.2020.13970.
Kvalsvik, F. (2022). Understanding the role of situational factors on online grocery shopping among older adults. Journal of Retailing and Consumer Services, 68, 103009. https://doi.org/10.1016/j.jretconser.2022.103009.
Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130–141. https://doi.org/10.1016/j.elerap.2008.11.006.
Leischner, E. (2023). Online-Lebensmittelhandel in Deutschland – Kundenseite. In Online-Lebensmittelhandel in Deutschland (pp. 69–82). Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-42210-3_4.
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817.
Liu, Y., Wang, M., Huang, D., Huang, Q., Yang, H., & Li, Z. (2019). The impact of mobility, risk, and cost on the users’ intention to adopt mobile payments. Information Systems and E-Business Management, 17(2), 319–342. https://doi.org/10.1007/s10257-019-00449-0.
Monoarfa, T. A., Sumarwan, U., Suroso, A. I., & Wulandari, R. (2024). Uncover the trends, gaps, and main topics on online grocery shopping: Bibliometric analysis. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25857.
Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur’s business model: Toward a unified perspective. Journal of Business Research, 58(6), 726–735. https://doi.org/10.1016/j.jbusres.2003.11.001.
Musakwa, I. S., & Petersen, F. (2023). Factors affecting consumer acceptance and use of mobile delivery applications in South Africa. South African Journal of Information Management, 25(1), Article 1. https://doi.org/10.4102/sajim.v25i1.1585.
Musikavanhu, T. B., & Musakuro, R. N. (2023). Consumer adoption of online grocery shopping in South Africa. South African Journal of Information Management, 25(1), Article 1. https://doi.org/10.4102/sajim.v25i1.1637.
Netscher, M., Jordan, S., & Kracklauer, A. H. (2024). Exploring Customer Acceptance of Smart Stores: An Advanced Model Approach. In M. A. Bach Tobji, R. Jallouli, H. Sadok, K. Lajfari, D. Mafamane, & H. Mahboub (Eds.), Digital Economy. Emerging Technologies and Business Innovation (pp. 311–338). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76365-6_19.
Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement. International Journal of Electronic Commerce, 11(4), 125–148. https://doi.org/10.2753/JEC1086-4415110405.
Qazi, A., Hasan, N., Abayomi-Alli, O., Hardaker, G., Scherer, R., Sarker, Y., Kumar Paul, S., & Maitama, J. Z. (2022). Gender differences in information and communication technology use & skills: A systematic review and meta-analysis. Education and Information Technologies, 27(3), 4225–4258. https://doi.org/10.1007/s10639-021-10775-x.
Rakhman, R. T., Piliang, Y. A., Ahmad, H. A., & Gunawan, I. (2021). Representation of Digital Native Generation in Visual Images. Arts and Design Studies, 90(0), 18–23. https://iiste.org/Journals/index.php/ADS/article/view/55523.
Rudolph, T., Nagengast, L., Bassett, M., & Bouteiller, D. (2015). Die Nutzung mobiler Shopping Apps im Kaufprozess. Marketing Review St. Gallen, 32(3), 42–49. https://doi.org/10.1007/s11621-015-0529-1.
Shen, H., Namdarpour, F., & Lin, J. (2022). Investigation of online grocery shopping and delivery preference before, during, and after COVID-19. Transportation Research Interdisciplinary Perspectives, 14, 100580. https://doi.org/10.1016/j.trip.2022.100580.
Shroff, A., Kumar, S., Martinez, L. M., & Pandey, N. (2024). From clicks to consequences: A multi-method review of online grocery shopping. Electronic Commerce Research, 24(2), 925–964. https://doi.org/10.1007/s10660-023-09761-x.
Singh, R., & Söderlund, M. (2020). Extending the experience construct: An examination of online grocery shopping. European Journal of Marketing, ahead-of-print. https://doi.org/10.1108/EJM-06-2019-0536
Tabachnick, B. G., & Fidell, L. S. (2014). Using multivariate statistics (Sixth edition, Pearson new international edition). Pearson.
Taglinger, M., Jordan, S., & Kracklauer, A. H. (2023). Acceptance of Artificially Intelligent Digital Humans in Online Shops: A modelling approach. Journal of Applied Interdisciplinary Research, 1, Article 1. https://doi.org/10.25929/jair.v1i1.127.
Thong, J., Hong, S.-J., & Tam, K. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human Computer Studies, 64(9), 799-810. International Journal of Human-Computer Studies, 64, 799–810. https://doi.org/10.1016/j.ijhcs.2006.05.001.
Venkatesh, V. (2006). Where To Go From Here? Thoughts on Future Directions for Research on Individual-Level Technology Adoption with a Focus on Decision Making. Decision Sciences, 37(4), 497–518. https://doi.org/10.1111/j.1540-5414.2006.00136.x.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36, 157–178. https://doi.org/10.2307/41410412.
Verhoef, P., & Langerak, F. (2001). Possible Determinants of Consumers’ Adoption of Electronic Grocery Shopping in the Netherlands. Journal of Retailing and Consumer Services, 8, 275–285. https://doi.org/10.1016/S0969-6989(00)00033-3.
Yim, M. Y.-C., Yoo, S.-C., Sauer, P. L., & Seo, J. H. (2014). Hedonic shopping motivation and co-shopper influence on utilitarian grocery shopping in superstores. Journal of the Academy of Marketing Science, 42(5), 528–544. https://doi.org/10.1007/s11747-013-0357-2.
Younes, H., Noland, R. B., & Zhang, W. (2022). Browsing for food: Will COVID‐induced online grocery delivery persist? Regional Science Policy & Practice, 14, 179–196. https://doi.org/10.1111/rsp3.12542
Yu, E. (2010). Modeling Strategic Relationships for Process Reengineering. https://doi.org/10.7551/mitpress/7549.003.0005.
Zeithaml, V. (1988). Consumer Perceptions of Price, Quality and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52, 2–22. https://doi.org/10.1177/002224298805200302
Zolfaghari, A., Thomas-Francois, K., & Somogyi, S. (2022). Consumer adoption of digital grocery shopping: What is the impact of consumer’s prior-to-use knowledge? British Food Journal, 125(4), 1355–1373. https://doi.org/10.1108/BFJ-02-2022-0187.