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Transformer models have the ability to understand the meaning of text efficiently 
through the use of self-attention mechanisms. We investigate the bundled meanings 
in clusters of transformer-generated embeddings by evaluating the topical clustering 
accuracy of the unlabeled scientific papers of the DIT publications database. After 
experimenting with SciBERT and German-BERT, we focus on mBERT as we work 
with multilingual papers. We create a landscape representation of the scientific fields 
with active research through the encoding and clustering of research publications. 
With the absence of topic labels in the data (no ground truth), the clustering 
metrics cannot evaluate the accuracy of the topical clustering. Therefore, we make 
use of the coauthorship aspect in the papers to perform a coauthorship analysis 
in two parts: the investigation of the authors’ uniqueness in each cluster and the 
construction of coauthorship-based social networks. The calculated high uniqueness 
of authors in the formed clusters and the found homogeneity of topics across the 
connected components (in social networks) imply an accurate topical clustering of 
our encodings. Moreover, the constructed social networks indicate the existence of 
a set of connecting internal authors, whose collaborations with each other formed a 
large network, holding 74% of all papers in the database.

Transformer-Modelle haben die Fähigkeit, die Bedeutung von Texten mithilfe von Self-
Attention-Mechanismen effizient zu verstehen. Wir untersuchen die semantische Bedeutung 
von Clustern, welche sich aus den durch die Transformer generierten Embeddings 
ergeben. Dabei wird die Treffsicherheit der thematischen Zuordnung ungelabelter 
wissenschaftlicher Publikationen aus der THD-Publikationsdatenbank bewertet. 
Nachdem wir mit SciBERT und German-BERT experimentiert haben, konzentrieren wir 
uns bei der Arbeit mit mehrsprachigen Artikeln auf mBERT. Die dargestellten Cluster 
der wissenschaftlichen Publikationen ergeben eine durchsuchbare Forschungslandschaft 
aller mittels Publikationen aktiven Disziplinen der THD. Da in den Daten keine 
Themenbezeichnungen vorhanden sind (keine Grundwahrheit), können die Clustering-
Metriken die Genauigkeit des thematischen Clusterings nicht bewerten. Daher nutzen 
wir den Aspekt der Koautorenschaft in den Arbeiten, um eine Koautorenschaftsanalyse 
in zwei Teilen durchzuführen: der Untersuchung der Einzigartigkeit der Autorinnen 
und Autoren in jedem Cluster und dem Aufbau koautorenschaftsbasierter sozialer 
Netzwerke. Die berechnete hohe Einzigartigkeit der Autorinnen und Autoren in den 
gebildeten Clustern und die gefundene Homogenität der Themen über die verbundenen 
Komponenten (in sozialen Netzwerken) implizieren eine genaue thematische Clusterung 
unserer Kodierungen. Darüber hinaus weisen die konstruierten sozialen Netzwerke auf 
die Existenz einer Reihe miteinander verbundener interner Autorinnen und Autoren 
hin, deren Zusammenarbeit untereinander ein großes Netzwerk bildete, das 74 % aller 
Beiträge in der Datenbank enthält.
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1. Introduction

 In recent years, the development of transformer 
models, such as the Bidirectional Encoder 
Representations from Transformers (BERT) 
model or the GPT series responsible for the 
popular ChatGPT, has revolutionized the 
field of natural language processing (NLP). 
These models have achieved stateof-the-art 
performance on various NLP tasks, including 
text classification, sentiment analysis, and 
question-answering.

A key feature of transformer models is their 
ability to encode the meaning of text efficiently. 
This allows them to generate contextualized 
mappings into a multidimensional vector 
space (embeddings) for each sentence. These 
embeddings can then be used as input to 
downstream tasks, such as classification or 
prediction. A clustering of these vectors is 
expected to highlight groups of semantically 
similar publications.

The focus of this article is on the topical clustering 
of scientific papers in the publications database 
of the DIT. These papers are published on certain 
topics, and their transformergenerated encodings 
reflect their corresponding topics. The goal of 
the approach is to highlight topical clusters 
without deliberately labeled data. The topic of 
each paper is represented by the contextualized 
transformer-generated embedding (vector). We 
assume that clustering the paper vectors leads 
to clusters representing the collective topic of 
its papers. Our investigation tries to establish 
that the identified clusters reasonably reflect 
the active research areas (in terms of published 
research papers) at the DIT.

The main research questions answered in this 
paper are:

•	 Can a fully unsupervised approach provide 
topical clusters that are semantically  

 
 
 
 
coherent and useful to understand the 
research landscape?

•	 Regarding multilingual input (which 
is relevant at any non-English research 
institution), can a multilingual model 
such as mBERT perform on par with a 
specialized model such as SciBERT, while 
including non-English texts? 

In our previous work [1], we established 
a methodology for calculating the cross-
distance between a pair of authors based on the 
respective encodings of their papers. We utilize 
this methodology to investigate the topics in the 
clusters. Initially, we reintroduce the encoding 
of data using Base-BERT and SciBERT and 
focus on obtaining a direct distance between any 
given pair of authors. We also utilize German-
trained BERT models to process and investigate 
the German papers in our data that were cast 
aside previously. To consolidate all papers into a 
single landscape, we then employ a multilingual 
BERT model (mBERT), which provides 
efficient encoding regardless of language while 
still offering reasonable clustering performance.

Since topical labels are not pre-assigned in the 
publications database, the quality of the obtained 
clusters is not straightforward to measure. Instead, 
quality is verified in two ways: Author cluster 
uniqueness and coauthor cluster consistency. A 
high number of unique authors per cluster, i.e., 
authors belonging to only that cluster, indicates 
that authors are clustered in a meaningful way. 
Investigating the co-author social networks, 
network size is expected to correlate strongly with 
the number of clusters covered. The experiments 
performed verify that assumption.

Surprisingly, we discovered that even in the 
comparatively small publications database 
of the DIT, a large connected component is 
found, covering about 3/4 of all publications. 
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Still, even in this large component, the topical 
clustering is clearly recognizable. The results 
of this paper therefore support the idea of an 
unsupervised approach for identifying topical 
clusters of research topics. This is the basis for 
drawing a comprehensive research landscape of 
publishing authors at the DIT.

As for the structure of this article, Section II 
presents the background of the technologies 
we use, such as transformer models, clustering 
techniques, and social networks. Section III 
discusses the previous works that dealt with 
BERT models, semantic similarity, and the 
clustering of transformer-generated encodings. 
Section IV is a data analysis section, in which 
we analyze the data we use in terms of textual 
property distributions (i.e., character and token 
count distributions). Section V presents the 
methodology of our work. It is similar to the 
methodology used in our previous paper [1]; 
however, we discuss the new angle, which we 
make use of to achieve our aim in this work. 
Section VI presents the experiments done in this 
work, their implementation and the rationale 
behind them. Finally, Section VII concludes the 
work and sets up possible future developments 
that could be built on our findings.

2. Background

This section introduces the applied techniques, in 
particular: transformers, clustering techniques, 
cluster evaluation metrics, keyword extraction, 
visualization of high-dimensional vector spaces, 
and social network analysis.

A. Transformers

Transformer models are a class of deep neural 
networks that have greatly advanced natural 
language processing (NLP) tasks in recent years. 
They were introduced in a landmark paper by 
Vaswani et al. [2]. Traditional NLP models, 
such as recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), have 
limitations in handling long-range dependencies 
and contextual information in a sentence or 
document. Transformer models overcome these 
limitations by using self-attention, a mechanism 
that allows the model to focus on the most 
relevant parts of the input text at each time 
step, while capturing long-range dependencies 
between words.

The transformer model consists of an encoder 

and a decoder, with self-attention as its key 
component. The encoder takes in the input text 
and encodes it into a sequence of hidden states, 
which are then used by the decoder to generate 
the output sequence. Self-attention is applied to 
each token in the input sequence to compute a 
weighted sum of all the tokens, with the weights 
determined by their similarity to the current 
token. This enables the model to attend to the 
most important parts of the input at each time 
step, while capturing longrange dependencies 
between words. Transformer models have 
achieved state-of-the-art performance on a 
wide range of NLP tasks, including language 
modeling, machine translation, and text 
generation, and are widely used in both 
academia and industry.

In our work, we use models of BERT [3] 
(Bidirectional Encoder Representations from 
Transformers) to encode our scientific papers, 
because they are capable of capturing semantic 
and contextual information in the text, which is 
crucial for understanding the research landscape 
of the papers. The encoded representations 
generated by transformer models are high-
dimensional and dense, which can capture the 
complex relationships between the phrases in 
the papers. This makes the clustering process 
on the paper encodings likely to be dependent 
on the topics of these papers, which is what our 
paper attempts to investigate.

B. Clustering Techniques

K-means [4] and DBSCAN [5] are two widely 
used clustering algorithms in machine learning. 
K-means is a partitioning algorithm that works 
by dividing data into K clusters, where K is a 
pre-defined hyperparameter. The algorithm starts 
by randomly selecting K points from the data 
as the initial cluster centroids. It then assigns 
each point in the dataset to the nearest centroid 
and updates the centroids to be the mean of the 
points in the cluster. This process is repeated 
until the centroids no longer change, indicating 
convergence. K-means is widely used due to its 
simplicity, speed, and scalability. However, it has 
some limitations, including its sensitivity to the 
initial selection of centroids and the assumption 
that the data is globular.

DBSCAN, on the other hand, is a density-based 
clustering algorithm that works by grouping 
together points that are closely packed together 
in high-density regions, while also identifying 
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points that are outliers. The algorithm defines 
clusters as areas of high density separated by 
areas of low density. It starts by selecting a 
random point and finding all the points that are 
within a pre-defined distance epsilon of that point. 
It then expands the cluster by recursively finding 
all the points that are also within epsilon of those 
points, until the cluster reaches its maximum 
density. The algorithm then repeats this process 
for other points in the dataset, assigning them 
to existing clusters or marking them as outliers. 
DBSCAN is useful in identifying clusters of 
arbitrary shape and is less sensitive to the initial 
parameters than K-means. However, it can be 
computationally expensive and requires setting 
two hyperparameters, epsilon, and the minimum 
number of points required to form a cluster.

In this paper, we cluster the BERT encodings 
of the papers in our database with K-means 
and observe the topics of the formed clusters. 
Density-based clustering is set to be addressed in 
future work.

C. Cluster Evaluation Metrics

Evaluating the quality of research paper clusters 
is crucial to ensuring that the resulting clusters 
are meaningful and accurate. We use Silhouette 
[6], Calinski-Harabasz [7], and Davies-Bouldin 
[8] metrics to evaluate the quality of the clusters. 
Silhouette measures how well each data point 
fits into its assigned cluster compared to other 
clusters, while Calinski-Harabasz measures 
the ratio of between-cluster variance to within-
cluster variance. Davies-Bouldin measures the 
average similarity between each cluster and 
its most similar cluster. These metrics provide 
a quantitative measure of the quality of the 
research paper clusters. We record these metrics 
as we describe the clustering results for future 
reference. However, as we work with unlabeled 
data, it is hard to evaluate the clusters with only 
these metrics. Therefore, we employ social 
networks built upon coauthorships.

D. Keyword Extraction with KeyBERT

KeyBERT [9] is a state-of-the-art keyword 
extraction algorithm that uses the transformer 
architecture to extract the most relevant words or 
phrases from a given piece of text. Specifically, 
KeyBERT fine-tunes a pre-trained transformer 
model, on a large corpus of text to create a 
keyword extraction model. The algorithm 
works by first embedding the input text using 

the pre-trained transformer model and then 
using a cosine similarity function to compare 
the embedding of each word or phrase in the 
text to the overall text embedding. The words 
or phrases with the highest similarity scores 
are selected as the most relevant keywords 
for the text. KeyBERT has several advantages 
over other keyword extraction algorithms, 
including its ability to capture the context and 
meaning of words and phrases, its flexibility in 
handling different types of text, and its speed 
and efficiency. In this paper, we use KeyBERT 
to extract keywords from the research papers 
in each cluster, which allowed us to explore 
the topics present in each cluster to assess the 
topical clustering of our data.

E. Visualization with UMAP

UMAP [10], or Uniform Manifold 
Approximation and Projection, is a powerful 
dimensionality reduction technique that 
has gained widespread popularity in recent 
years. UMAP works by constructing a low-
dimensional representation of high-dimensional 
data such that the local structure of the data is 
preserved as much as possible. Specifically, 
UMAP constructs a topological representation 
of the data using a fuzzy simplicial set, which 
captures the local relationships between points 
in the high-dimensional space. It then constructs 
a low-dimensional embedding of the data using a 
nonlinear optimization algorithm that preserves 
these relationships to the highest possible 
extent. The optimization process is guided by a 
loss function that balances the preservation of 
local structure with the need to spread out points 
in lowdimensional space. UMAP has several 
advantages over other dimensionality reduction 
techniques, including its ability to preserve both 
local and global structure, its ability to handle 
non-linear relationships between variables, 
and its speed and scalability for large datasets. 
In this paper, we use UMAP to visualize the 
clusters formed by our clustering methodology, 
providing a powerful tool for exploring the 
relationships between different research papers 
and their authors.

F. Social Networks

Social networks are a valuable resource 
for understanding the relationships and 
collaborations between individuals in a 
particular field of study. The networkx library 
[11] in Python provides an efficient and easy-
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to-use tool for constructing and analyzing 
social networks. The library allows researchers 
to create graphs and networks, where nodes 
represent individuals and edges represent 
relationships between them. By analyzing the 
structure of these networks, researchers can 
gain insights into the patterns of collaboration 
and knowledge transfer in their field of study. 
In this paper, we use networkx to construct 
coauthorship networks, which provided us 
with a unique perspective on the relationships 
between authors in different research paper 
clusters. This analysis allowed us to identify 
authors who were unique to each cluster, 
providing further evidence for the topic-based 
nature of our clustering methodology.

3. Related Work

The use of transformer models for encoding and 
clustering scientific data has gained considerable 
attention in recent years. Guo et al. [12] 
presented an unsupervised clustering method 
for grouping scientific articles into meaningful 
clusters based on the encodings generated by 
transformer models. However, their data was 
not multilingual, and their work did not include 
density-based clustering. Similarly, Beltagy 
et al. [13] introduced SciBERT, a pre-trained 
transformer model that is specifically designed 
for scientific text. SciBERT is trained on a 
large corpus of scientific documents and has 
been shown to outperform general purpose 
language models in various downstream 
tasks such as named entity recognition and 
relation extraction. Multilingual clustering is 
another area where transformer models have 

been applied. In a paper by Artetxe et al. [14] 
a method was presented for unsupervised 
multilingual representation learning that can 
be used for clustering low-resource languages. 
Their method leverages cross-lingual encodings 
generated by transformer models to group 
similar words and phrases across different 
languages. This approach has the potential to 
significantly reduce the amount of labeled data 
required for clustering low-resource languages.

Concerning semantic similarity, Ostendorff et 
al. [15] found that SciBERT outperformed other 
models in measuring aspectbased document 
similarity. Chandrasekaran and Mago [16] 
noted that recent hybrid methods show promise 
in measuring semantic similarity. Kades et al. 
[17] developed methods to address semantic 
similarity in medical data using BERT. Yang 
et al. [18] demonstrated the use of transformer-
based models in measuring semantic similarity 
in clinical texts and found that RoBERTa 
performed the best. 

Social network analysis has also been a 
popular topic in the field of scientific research. 
Coauthorship networks, in particular, have 
received much attention due to their ability to 
reveal patterns of collaboration and knowledge 
exchange among researchers. In a paper, 
Newman et al. [19] provided an overview of 
coauthorship networks and their applications 
in different fields, including bibliometrics, 
sociology, and computer science. Meanwhile, 
Ravasz et al. [20] proposed a method for 
detecting overlapping and hierarchical 
community structures in networks. This method 

Figure 1. Paper-Object Example
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uses a combination of density-based clustering 
and hierarchical clustering to identify groups of 
nodes that are tightly connected to each other.

Density-based clustering algorithms have also 
been proposed for high-dimensional vectors, 
such as the DBSCAN algorithm introduced 
by Ester et al. [5]. DBSCAN is particularly 
effective at identifying clusters of varying 
shapes and sizes, which makes it a suitable 
algorithm for clustering highdimensional data 
such as transformer encodings. On the other 
hand, centroid-based clustering algorithms, 
such as K-means, have been widely used in 
clustering high-dimensional vectors. Bahmani 
et al. [21] proposed a scalable version of the 
Kmeans algorithm that is capable of clustering 
massive datasets efficiently.

Overall, these studies demonstrate the potential 
of using transformer models for encoding 
and clustering scientific data, as well as the 
importance of considering social networks 
and density-based clustering algorithms in this 
context. By leveraging the latest advances in 
machine learning, we can generate clusters of 
the BERT encodings of our research papers, 
and perform a topic-based evaluation by means 
of coauthorship-based social networks.

4. Exploratory Data Analysis

This paper uses the same data as our first results 
paper [1], consisting of 7,548 references. The 
data include various types of references, but 

only 1,500 (sic) scientific articles with abstracts 
are chosen for this investigation. Each selected 
entry has at least a title, a list of authors, a 
date, and an abstract, topically unlabeled. An 
example of an entry is shown in Figure 1, 
where authors are marked by name and internal 
authors are identified by their e-mail addresses. 
We remove entries that have over 512 tokens 
in their abstract. The BERT models have a 
limitation of 512 tokens per input (with the 
exception of SciBERT, which is limited to 768 
tokens). If a text item has more tokens, the 
BERT model will truncate the input, which can 
result in the loss of valuable information. Figure 
2 shows the histogram of the token count per 
abstract. After the removal of the items with no 
abstracts (presentations, interviews, etc.) and 
the items with an abstract token count over 
512, we end up with 1,459 items. An overview 
is shown in Table I.

5. Methodology

This section presents the general processing 
approach implemented in this work and the 
methodology used to calculate the cross-distances 
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Total # publications 7,548

Publications w. abstracts 1,500

Abstracts < 512 tokens 1,459

Table 1: Summary values for the publications database

Figure 2. Histogram plot of the tokens count per abstract

Topical Clustering of Unlabeled Transformer-Encoded Researcher Activity



510

between the authors. These cross-distances are 
the main contribution of our previous work [1]. 
We reintroduce them here to merge the results of 
the authors’ social networks and the results of the 
distances between these authors.

A. General Approach of Processing

The goal of our implementation is to compare 
the results of the different BERT models 
and the different clustering techniques. In 
parallel, we extract the keywords for each text 
and use the generated labels (cluster labels) 
to map these keywords into their respective 
clusters. This attempts to assign a research 
field (a topic) for these clusters. We check the 
accuracy of such assignments by performing a 
coauthorship analysis afterwards. Figure 3 shows 
the implementation overview of the processing 
pipeline. The abstracts are fed to the BERT 
models as input to generate the high-dimensional 
encodings (or HD vectors), with each HD vector 
representing its respective abstract. We cluster 
the HD vectors using the different clustering 

techniques (centroid- and density-based) to 
obtain a set of 1,459 labels. Each label is a natural 
number from 0 to n (for n+1 clusters). We map the 
HD vectors onto the 2D plane to plot them with 
label-based coloring. We take the text of each 
abstract, extract its keywords using KeyBERT, 
and form clusters of keywords by assigning each 
set of extracted keywords the respective label of 
the abstract HD vector. 

In terms of centroid-based clustering, we set the 
clustering process to perform 10 runs, each run 
with maximum_iterations set to 100. At the end 
of each run, we calculate the sum of the three 
chosen metrics: Silhouette, Calinski-Harabasz, 
and Davies-Bouldi. At the end of this iterative 
process, we take the labels that correspond to 
the highest sum. We record our results for future 
reference.

B. Distances between Authors

The database we use in our work contains a set of 
authors and their corresponding research papers. 

We have encoded each paper using BERT 
models and computed the average distance 
between the encodings of each pair of authors, 
which we refer to as the cross-distance. The 
cross-distance is an indicator of the similarity 
between two authors in terms of their research 
topics. Let P1 be the set of papers by author 
1 (A1) and P2 likewise be the set of papers by 
author 2 (A2). Then the distance between authors 
1 and 2 is defined as:

We have analyzed the self-distance of each 
author by computing the average distance 
between the encodings of their own papers. A 
lower self-distance value reflects the author’s 
precise focus on a specific field. Our previous 
study [1] has revealed that if two authors have 
coauthored one or more papers, their cross-

distance value is on average lower than the 
total average distance value, indicating a higher 
similarity in research topics. Furthermore, we 
have found that authors with lower self-distance 
values tend to have a more precise research 
focus. This demonstrates the effectiveness of 
the BERT model in encoding research papers to 
identify similarities between authors in terms of 
research topics.

We employ the concept of cross-distances to 
investigate the correlation between the authors’ 
self-distances and their respective number of 
connections within their social networks.

6. Experiments

In this section, the experiments done throughout 
this work and both the rationale behind them and 
the results obtained from them are discussed. 

Abstracts

UMAP

Clustering

HD Encodings

2D Vectors

Labels

Plotting

KeyBERT Keywords

BERT

Figure 3. Implementation Overview
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In our previous work [1], the focus was on 
the Base-BERT model. However, this has two 
drawbacks: It is not specialized in scientific 
articles, and it does not cover multilingual input 
very well. Here, the focus is on investigating and 
comparing two other models: SciBERT, which 
is trained specifically on scientific articles, and 
mBERT, which is trained on multilingual data. 
A side comparison with BERT models trained 
on German data is also provided. 

A. Scientific text-oriented Processing: SciBERT

SciBERT is a modified version of BERT that 
was trained on scientific text data. The training 
process for SciBERT was similar to that of 
BERT, but with some modifications to better 
handle scientific language. To train SciBERT, 
the researchers used a large corpus of scientific 
papers from a variety of fields, including 
computer science, biology, and physics. The 
corpus was preprocessed and tokenized in 
the same way as BERT, using the WordPiece 
algorithm. The architecture of SciBERT is 
the same as that of BERT, but the pre-training 
process was modified to better handle scientific 
language. The resulting model has been shown 
to outperform BERT on a range of scientific 
text-related tasks, including named entity 
recognition, relation extraction, and sentence 
classification. We select only the English papers 
in the database and encode them with SciBERT 

(our data includes both English and German 
papers). Figure 4 shows the UMAP-2D vectors 
of the SciBERT encodings.

We cluster the high-dimensional vectors that 
are generated by SciBERT using K-means to 
observe the initial distribution of the English 
papers. We cluster the high-dimensional vectors 
instead of the 2D-mapped vectors because the 
HD vectors contain more information, while 
the mapped ones are only their projections. The 
distance between a pair of HD vectors is not in 
correlation with the distance between the pair of 
their respective projections. This is also known 
as the binary stars situation. Figure 5 shows the 
K-means clusters of the SciBERT encodings 
(7 clusters). We have noted on the figure the 
titles of two papers from two clusters randomly 
selected. By reading these titles, we observe 
that there might be a similarity of topics in each 
cluster. For reference, Silhouette, Calinski-
Harabasz, and Davies-Bouldin scores are 0.102, 
112.266, and 3.067, respectively.

To investigate this, we extract the keywords of 
the papers in each of these clusters through our 
KeyBERT-based processing pipeline. Table II 
displays the major keywords of each cluster. From 
this table, we observe that despite the similarity 
between clusters 0 and 6 and the ambiguity of 
cluster 2, each of the other clusters has a distinct 
field. However, the data that was fed to SciBERT 
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Figure 4. Scatter Plot of UMAP-Reduced SciBERT Encodings
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did not include the German papers. Therefore, 
we process these papers using German-trained 
BERT models, as they have been cast out of the 
processing pipeline so far.

B. Non-English Data: Processing German 
Papers

As previously mentioned, the vectors 
representing the papers written in German were 
put into one cluster, as SciBERT has embedded 
the German texts very similarly to each other, 
and distinctively from the English texts. The 

obtained similarity, however, only represents 
linguistic differences and is not topic-based.

We chose the transfomer models that were 
trained specifically on German data: German 
Base-BERT Cased, and German Base-BERT 
Uncased (DBMDZ).

•	 Cased German Base-BERT: The authors 
trained on a single cloud TPU v2 with 
the default settings using Google’s 
Tensorflow code. They trained 30k 
steps with a sequence length of 512 and 

Predicting high-grade prostate cancer...

Spin-fluctuation effects in magnetic-polaron formationSpin-fluctuation effects in magnetic-polaron formation

Towards a dynamical theory of magnetic polaron...

Effects of nicotine on response inhibition...

cluster keywords

0 exciton, quantum, magnetic, electron, polaron
1 video, classification, recommender, data, 3d
2 computer tomography, systems, digitalisation, management
3 optical, polishing, surface laser, machining
4 melanoma, gene, macrophage, health, biomarker
5 renewable, solar, photovoltaic, sensor, microgrid
6 dielectric, plasma, microscopy, nanowire, oxide

Table 2: KeyBERT-generated Cluster keywords of SciBERT encodings

Figure 5. K-means Clusters of SciBERT Encodings (English only)
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810k steps with a batch size of 1,024 for 
sequence lengths of 128. While it takes 
roughly nine days to train, they used 
news articles, the most recent German 
Wikipedia dump (6GB of raw txt files), 
and the OpenLegalData dump (2.4 GB) 
as training data (3.6 GB). With the help of 
customized scripts and spacy v2.1, they 
cleaned the data dumps and utilized the 
suggested sentencepiece library to build 
the word piece vocabulary and tensorflow 
scripts to turn the text into data that could 
be accessed by BERT in order to construct 
tensorflow records. 

•	 Uncased German Base-BERT (DBMDZ): 
The work offers another German-language 
model in addition to the released German 
BERT model from deepset. A recent 
Wikipedia dump, the EU Bookshop 
corpus, Open Subtitles, CommonCrawl, 
ParaCrawl, and News Crawl make up 
the model’s underlying data. As a result, 
a datase with 2,350,234,427 tokens and 
a 16 GB size is produced. The authors 
employed spacy to separate sentences, and 
the same preprocessing techniques as those 
used to train SciBERT (sentence fragment 
model for vocabulary creation). The model 
underwent 1.5 M steps of training with a 
starting sequence length of 512 subwords. 

We chose to use both cased and uncased 
models for the German language because while 
uppercase nouns may suggest that case is more 
significant in German than in English, it does 
not necessarily mean that a cased model will 
perform better on all tasks. In cases like part-
of-speech detection, it is unclear whether the 
benefits of having a much larger vocabulary 
from using a cased model outweigh the added 
complexity. Cased models have separate 
vocabulary entries for differently-cased words. 
To observe the potential variations that could 
occur with different casings, we applied each 
model to the data and clustered the resulting 
vectors. Figures 6 and 7 display the outcomes 
of the cased and uncased models, respectively.

The uncased model in Figure 7 has produced 
vectors that are closer to each other (in terms 
of their 2D projection) than the cased model in 
Figure 6. The latter model apparently makes a 
sharp distinction between one of the clusters 
(top left) and the rest. However, the clusters in 
each graph could not be distinguished to the 
point of falling into a certain field or topic. As 
for clustering metrics, the scores of Silhouette, 
Calinski-Harabasz, and Davies-Bouldin for the 
cased German BERT are 0.100, 19.480, and 
2.815, respectively. Whereas for the uncased 
German BERT, these respective scores are 
0.047, 8.879, and 3.326. Table III shows the 
keywords of these clusters. From Table III, 

Figure 6. Scatter Plot (Clusters) of UMAP-Reduced Encodings of German Base-BERT Cased
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the exclusive processing of German papers 
was not exact enough to the point of drawing 
clear topics, which in turn could represent the 
landscape of research published in German by 
the institute.

The uncased model presented in Figure 7 yielded 
vectors that were more closely situated (based 

on their 2D projection) than the cased model 
depicted in Figure 6. The latter model sharply 
separated one of the clusters (top left) from the 
others. However, neither of the models allowed 
for clear differentiation among the clusters with 
respect to particular fields or topics. In terms 
of clustering metrics, the Silhouette, Calinski-
Harabasz, and Davies-Bouldin scores for the 

Figure 7. Scatter Plot (Clusters) of UMAP-Reduced Encodings of German Base-BERT Uncased (DBMDZ)

Cased German BERT

cluster keywords

0 metallkörper, datenanalyse
1 computertomographie, visualisierung
2 digitalisierung, innovationsnetzwerke
3 innovationsmanagement, digitalisierung
4 beschäftigung, bevölkerung

Uncased German BERT (BDMDZ-BERT)

cluster keywords

0 beschäftigung, bevölkerung
1 faserverbundkunststoffe, ethernet
2 digitalisierung, innovationsmanagement
3 lernortkooperation, destinationsmanagement
4 diskriminierung, arbeitseinstellung

Table 3: Cluster-Keywords Table for German Papers
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cased German BERT are 0.100, 19.480, and 
2.815, respectively. By contrast, the respective 
scores for the uncased German BERT are 
0.047, 8.879, and 3.326. Table III presents the 
cluster keywords of these clusters. Overall, our 
exclusive processing of German papers did not 
achieve sufficient granularity to reveal distinct 
research topics that might represent the landscape 
of German research published by our institute. 
Therefore, we intend to utilize a multilingual 
BERT model that can process all of the papers 
at once to construct the clusters in an appropriate 
way that spans the whole set of abstracts.

C. Processing Multilingual Data: mBERT

Multilingual BERT (mBERT) is a language 
model developed by Google that can understand 
and generate text in multiple languages. It 
is trained on a large corpus of text from 102 
different languages, allowing it to effectively 
model and generate text in diverse linguistic 
contexts. mBERT uses a transformer-based 
architecture that employs bidirectional encoding 
to capture contextual relationships between 
words in a sentence. This architecture enables 
it to perform a range of natural language 
processing (NLP) tasks such as named entity 
recognition, sentiment analysis, and machine 
translation. Additionally, mBERT is capable 
of performing cross-lingual transfer learning, 
which means that it can transfer knowledge from 
one language to another and use this to improve 

the accuracy of its predictions. These features 
make mBERT a powerful tool for multilingual 
NLP tasks and have led to its widespread use in 
academia and industry. 

We use mBERT to encode all of the papers in our 
database. This permits a complete representation 
of the research landscape in the institute, based 
on which we generate more fitting clusters. 
We can then investigate the appropriateness 
of the formed clusters (in terms of topic) by 
observing the extracted keywords from each 
cluster and performing a coauthorship analysis. 
The mBERT encodings of our data are mapped 
onto a 2D plane and plotted in Figure 8. The 
vectors produced by mBERT can be seen to be 
held on one continent, which initially indicates 
an appropriate handling of papers regardless of 
the human language used (as each of our papers 
is written in either English or German).

We now perform the clustering process on the 
generated mBERT encodings. The obtained 
clusters are shown in Figure 9. We have noted 
on the graph a few random points from each 
cluster. The initial observation is that the points 
in each of the groups 1, 2, and 4 fall in one field: 
computer tomography in group 1 (computer 
science department), Chinese-German medicine 
in group 2 (health department), and energy in 
group 4 (power department). Group 3 is an 
example of points that appear far on the graph 
but still fall under one topic (health).

Figure 8. Scatter Plot of UMAP-Reduced mBERT Encodings
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The mBERT model has encoded similar papers 
close to each other regardless of their language 
(represented by groups 1, 2, and 4 on the 
graph). The HD-vector clustering appears to 
be accurate, as each group of papers is held in 
their own shared cluster, although UMAP has 
mapped them far from each other at times in 
2D (group 3). For reference, the Silhouette, 
Calinski-Harabasz, and Davies-Bouldin scores 
are 0.035, 30.369, and 4.468, respectively.

We extract the keywords for each of the formed 
clusters using KeyBERT to obtain the general 
topic of each of them. Table IV shows the 

result of the keyword extraction process. The 
topics formed from the keyword extraction are 
the most precise so far (even distinguishing 
between Media Engineering and Computer 
Science papers). Having a consistency of 
keywords across each cluster while spanning 
all data regardless of human language makes 
the generated clusters a good reflection of the 
topics in our database. The observed topics 
match the departments that are active in research 
at the DIT. The topics of health, economics, 
and computer science match their respective 
departments. The materials topic is in the natural 
sciences department. Manufacturing is divided 

(1)

(2)

(3)

(4)

Computed Tomography as a Tool for...

Industrieller Röntgen-Computertomografie

Herbal Traditional Chinese Medicine...

Validation of a CE-IVD,
RNA expression assay
Validation of a CE-IVD,
RNA expression assay

Archetypes of Country
Energy Systems

Role of Immune Cells in Animal Models for...Role of Immune Cells in Animal Models for...

Chinesisch-Deutsches Zentrum
für Traditionelle Chinesische Medizin

Nuclear fusion and renewable
energy forms

Gesicherte Stromversorgung in Bayern

Figure 9. Clusters of mBERT Encodings (multilingual set of papers)

Multilingual Data

cluster keywords topic (manual)

0 polishing, grinding, welding Manufacturing
1 3dtv, stereoscopic, resolution Media
2 renewable, emissions, photovoltaic Power
3 tourism, resorts, pension Economics/Management
4 classifier, recommender. virtualization Computer Science
5 prostate, aerobic, schizophrenia Health
6 nanowire, dielectric, semiconductor Material

Table 4: Cluster-Keywords Table of Multilingual BERT
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between the departments of natural sciences and 
mechanics. Media is also divided between media 
and computer science departments, and power 
is divided between electrical engineering and 
mechanics departments. The department of civil 
engineering lacks the respective cluster, which 
is the product of having a smaller set of research 
papers in comparison to the other departments. 
This is shown in Figure 10. There exists an 8th 
department at the DIT, which is the European 
Campus Rottal-Inn. This department offers a 
set of different programs, such as industrial 
engineering and digital health. The papers 
from this department do not have a common 
topic but fall into different ones. Therefore, it 
was topically indistinguishable in the formed 
clusters.

However, as our dataset is unlabeled, it 
remains difficult to determine the reliability 
of the constructed clusters. Therefore, we go 
beyond the systematic use of cluster metrics 
by employing the coauthorship aspect of our 
data to determine the accuracy of this topical 
clustering.

D. Authors and Clusters: A Relationship to 
Investigate

In Subsection V-B, we have stated the term 
self-distance. This self-distance represents 
the breadth of research topic for each author 
(introduced in our previous work [1]). We have 

observed that even the author with the highest 
self-distance publishes in one cluster. If authors 
generally publish their papers in one cluster 
(one topic), the exclusiveness of authors within 
a cluster is an indication of its construction 
accuracy.

Let Ln be the list of clusters (C0, C1,..., Ck) that 
author An is involved in, and IP(An,Cm) the 
Involvement Percentage of author An in cluster 
Cm. IP(An,Cm) is then defined as:

The Uniqueness Percentage UP(Cm) of a cluster 
Cm, in terms of how exclusive the authors in the 
list of its authors Um, is defined as:

Figure 11 shows the results of our UP 
calculations. The lowest average percentage 
of uni-clusteric authors is 80.85% (cluster 3), 
meaning that most clusters have over 80.85% 
of unique authors. Although the papers of an 
author are generally of one cluster, the authors 
can branch out and collaborate with other 
researchers in different fields. For example, if 
author A publishes mainly on computer science 

Figure 10. The Observed Cluster Topics in relation to the Departments at the DIT
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topics (cluster 4), but occasionally collaborates 
with colleagues in the medical sciences field 
(cluster 5), author A is said to be a shared author 
between clusters 4 and 5. The example of an 
author being mainly in one cluster and branching 
out on a few occasions is practical. To visualize 
the authors shared between cluster pairs, we 
plot the number of authors inside each cluster 
and the number of shared authors between 
them, as shown in Figure 12. We observe a 

few pairs of clusters that share high numbers 
of authors, such as clusters 0 and 6 (85 shared 
authors), clusters 0 and 4 (56 shared authors), 
and clusters 3 and 4 (61 shared authors). The 
topics of two clusters can be close enough to 
overlap, implying authors with papers in both 
topics, such as clusters 0 and 6 with Industry 
and Material Engineering or clusters 3 and 4 
with Computer Science and Economics (Econ-
Informatics being a major sub-department of 

0 1 2 3
6 90.42%

86.77%

84.51%

83.53%

80.85%
93.52%

86.02%

54

Figure 11. The Uniqueness Percentage of Each of The 7 Clusters in mBERT Encodings

Figure 12. Total Count of Authors in Each Cluster, Along with Count of Shared Authors
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Economics). We have observed that our papers 
contain the general case of authors publishing 
in one cluster but still coauthoring research 
with different-field authors on shared topics (or 
topics that make use of two different fields, such 
as image processing in medical engineering). 
The percentage of unique authors (over 80.85%) 
in each cluster implies an initial indication 
of an accurate topical clustering of papers. 
However, to affirm such an indication, we use 
our data to construct social networks based 
on coauthorships between researchers. The 
construction of connected components (research 
groups) with topical homogeneity would affirm 
the accuracy of the topical clustering. 

E. Constructing Social Networks of Research 
Groups 

We construct the social networks that reflect 
the relationships  between the authors. The 
constructed connected components are expected 
to represent the research groups, in which the 
authors take part. The authors are grouped by 
coauthorship, with coauthors as edges to the 
components. Using the networkX library, the 
connected components of authors are formed. 
Figures 13 and 14 show the correlation between 
the edge count and the self-distance of each 
author and the bar plot of that distribution per 
author.

Figure 13 indicates that edge counts are 
exponentially proportional to the self-distances 
(representing the topic breadth of an author). 
Therefore, the more topics an author has, 
the more likely it is that connections will be 
made. The number of connections in this case 
is represented by the edge count. In Figure 15 
we plotted the edge count in relation to cluster 
count. It shows that the higher the number of 
authors in a component, the higher the number 
of clusters included. 

Concerning the node colors in the following 
graphs, an author with papers strictly falling 
into one cluster is assigned the color of this 
cluster. The color gray is assigned to authors 
having papers in different clusters. We observe 
the obtained cases in the formed networks:

1) Single paper with multiple authors: Figure 16 
shows an example for a single paper written by 
7 authors.

2) Close cooperation between authors: Some 

groups of authors cooperate very closely. In such 
a case, we expect a small, fully connected graph 
where every person cooperates with every other 
person. Such a case is presented in Figure 17. 
Three authors work in the same field, publishing 
three different papers with each other. The group 
is isolated from other researchers but closely 
knit within itself.

3) Close research network: When different 
research groups work in the same field, 
cooperation between them is relatively easier. 
Figure 18 shows a case of different research 
leaders (marked with blue) collaborating with 
each other. When these researchers collaborate, 
they do not always bring their groups with 
them. Groups 1, 2, 3, and 4 are not connected. 
However, groups 4 and 5 are partially connected. 
The lead researchers of groups 1, 2, and 3 are 
fully connected to these groups, despite their 
blindness to each other. The research leaders are 
all connected to each other, except for the one 
marked in red. The multiple works (13 papers) 
of this close research network are all assigned 
to the same cluster 6 (field of Materials). This 
indicates accurate topical clustering.

4) Leader of research group: A senior researcher 
can be the leader of multiple research groups. 
Figure 19 shows an example of one internal 
research leader (gray node) and the multi-
topical research associates. The gray node is 
connected to every other node in this component, 
indicating that the leader has worked with every 
other apparent associate in the graph. At least 7 
distinct research groups can be identified. The 
distinction between two groups is drawn from 
the nodes of each group connecting only within. 
The node with the blue mark signifies a vice-
leader between groups 1 and 2. A research leader 
with distinct yet same-field groups indicates 
that different yet close topics are addressed. 
For example, if a research leader publishes in 
both computer vision and natural language 
processing, the papers produced are going to fall 
into the computer science field. However, this 
leader can work with two distinct groups, each 
focusing on one topic in the field. The research 
leader in the graph has branched out in two 
papers (one in computer science and the other 
in power engineering). All of the other papers 
are by teams focusing on materials engineering. 
The occasional interconnections between the 
same-field groups, along with the absence of 
connections between the different-field groups, 
affirm the topic-clustering accuracy.

Topical Clustering of Unlabeled Transformer-Encoded Researcher Activity
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Figure 13. Scatter Plot of Edges Count of Authors in 
Relation to their Respective Average Self-distance

Figure 17. Connected Component For Same Authors 
Repeatedly

Figure 14. Bar Plot of Edges Count Per Authors (x-axis: 
number of edges for an author, y-axis: number of authors 
having n-edges)

Figure 18. Connected Component For Close Research 
Network

Figure 15. Scatter Plot of Edges Count in Relation to Cluster 
Count in the formed Social Networks

Figure 19. Connected Component For Internal Research 
Leader

Figure 16. Connected Component For Single Multi-author 
Paper

Figure 20. Connected Component For A More Complex 
Research Network
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5) Complex research group: Research groups 
can take a complex form that is difficult to 
comprehend. Figure 20 shows an example of 
such a complex research network. There are 9 
authors that have published in different fields 
(gray nodes). At least 1 out of these gray authors 
has published in 3 fields: materials, power, 
and economics. The gray nodes take a central 
position in the graph, whereas the others are 
drawn peripherally. These centralized authors 
are considered to bring research together in a 
relatively small format on different topics.

6) The largest component: Research groups 
are assumed to be topically isolated within 
the DIT. However, other than the minority 
of the isolated networks (such as the ones 
presented previously), the majority of authors 
are contained in a large connected component, 
displayed in Figure 21 (bigger nodes represent 
the internal authors). This large component is 
composed of 1,832 authors having 1,103 papers. 
The cluster counter is recorded in Table V. 

In the network, the internal authors are 
connected closely to their research groups 
(on both ends). However, they always make a 
connection with other authors (often internally). 
This action snowballed to the point of creating 
such a massive network. The internal authors, 
having a few topics, collaborate occasionally 
with each other to form a circle that keeps the 
research connected within the institute. The 
collaborations always include at least one multi-
clustral author, whose associates are joint-in. 
These gray authors are the reason for such 
formation. We deduce the following points from 
this large structure:

•	 Research covering different fields can be 
attractive. Especially with the availability 
of different yet close fields in the institute 
of applied sciences. A topic in power 
engineering can have an industry or 
material aspect to it. The same applies 
for other topics in computer science and 
media engineering. Also, many topics in 
the health department use technologies 
developed through research in computer 
science.

•	 Other than this, the employment of a 
generated result in a different topic than its 
generation-related topic is a valid attempt 
to extrapolate these results.  

Contrary to our expectations regarding the 
structures of social networks, there exists a set 
of internal authors whose collaborations with 
each other form this large network. The ends 
of this major component represent the research 
groups of these internal authors. In each of 
these ends, there exists topic homogeneity. 
This indicates that the research groups of 
these internal authors also follow the same 
topical pattern as the isolated groups. If the 
collaborations between these internal authors 
are removed, the large network breaks down into 
smaller components that follow similar patterns 
as presented previously, implying an accurate 
topical clustering of the BERT encodings.

7. Conclusion

This article deals with the topical clustering of 
the scientific papers in the internal publications 
database of the DIT. The transformer-
generated encodings of these papers reflect 
their corresponding topics. We investigated the 
topical clustering of such unlabeled data. In our 
previous work [1], we established a methodology 
for calculating the cross-distance between a pair 
of authors based on the respective encodings 
of their papers. We utilize such a methodology 
to investigate the topics in the clusters. This 
previous work focused on the use of Base-BERT 
and SciBERT and ignored the non-English 
papers. We reintroduced SciBERT and the 
centroid-based clustering technique (K-means). 
We extracted the keywords for each cluster and 
observed an ambiguity in the keywords of the 
generated clusters. In parallel, we investigated 
the non-English papers in our data (German 
papers) by using both cased and uncased 
models. We analyzed the minor differences 
between the two models and extracted their 
cluster keywords. However, to generate a 
single landscape for all papers, we employed a 
multilingual BERT model (mBERT). mBERT 
was efficient in generating a research landscape 
that included all papers. Although the texts are 

clusters 0 1 2 3 4 5 6
paper count 240 115 87 62 252 115 232

Table 5: Cluster-Counter Table of the largest component
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Figure 21. The Largest Connected Component

written in scientific language, mBERT showed 
acceptable results, as its clusters (and their 
keywords) matched the research departments 
of the DIT, despite the fact that mBERT is not 
trained specifically on scientific data (compared 
to SciBERT). The keyword-based approach of 
relating the researchers (the previous approach 
of relating authors [22]) is more language-
dependent than our new transformer-based 
approach. The model mBERT makes it possible 
to transcend language barriers. Two papers 
written in different languages but focusing 
on similar topics, are encoded into relatively 
close vectors by mBERT. This ability provides 
accuracy in the topical clustering of different 
papers, contextually and regardless of their 
languages. Our work with mBERT finalizes a 
major point in the future work section of our 
previous paper [1]. Due to the absence of labels, 

the clustering metrics cannot fully affirm the 
accuracy of the topical clustering. We resorted to 
keyword extraction and coauthorship analysis, 
making use of the coauthorship aspect of our 
textual data. The first part of the analysis involves 
investigating the uniqueness of the authors in 
each cluster. Our calculations indicated a high 
uniqueness percentage of authors in each cluster 
(over 80%). The second part of the coauthorship 
analysis is the construction of coauthorship-
based social networks. The constructed 
components contain a large network. This large 
network holds 74% of internal authors, whose 
collaborations with each other are key to this 
large formation. Without these collaborations, 
the large network decomposes into a set of 
small components that have a similar structure 
to the other networks. The construction of 
coauthorship-based social networks showed 
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topic homogeneity in the formed components, 
which represent the research groups at the DIT. 
Taking all this into account, we conclude that the 
generated clusters are semantically meaningful.

In our research, we employ pre-trained 
models without undergoing any fine-
tuning. Consequently, the methodology and 
approach presented here can be applied to 
analogous publications databases. While the 
comprehensiveness of the respective outcomes 
cannot be guaranteed until they are investigated, 
similar results are to be expected. Still, a 
limitation of our work is the absence of text 
for other publications, such as presentations, 
interviews, or similar. The data used here is 
limited to research papers only. Although 
we do not use other types of publication, we 
fully acknowledge the importance of such 
contributions. Our decision to focus on only 
research papers with abstracts stems from the 
need for the availability of an expressive text for 
each item, permitting the transformer models to 
encode it in a comprehensive way.

In future work, we will consider how to 
incorporate other types of publication into our 
approach. Moreover, graph neural networks can 
be employed to predict the missing connections 
in the co-publication graphs. Enhancing the 
keyword extraction process leads to an accurate 
semantic meaning for the clusters formed by 
K-means in the latent space of publication 
vectors. The large social network can be used 
to identify the connecting researchers. We have 
also performed preliminary experiments with 
DBSCAN on the HD-vectors that need to be 
focused in the future.
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