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A Comparison of Convolutional Neural Networks and 
Feature-Based Machine Learning Methods for the 

Ripeness Classification of Strawberries

Leon Binder* Michael Scholz* Roman-David Kulko*

A variety of machine learning methods are often used for ripeness detection of fruits 
and vegetables using image data. Existing research in this area often focuses only 
on training feature-based classifiers or on using raw images with convolutional 
neural networks. The purpose of this paper is to compare both approaches in 
terms of their classification accuracy. To answer our research question, we 
analyze the performance of convolutional neural networks and different feature-
based classifiers on a balanced dataset consisting of three strawberry ripeness 
classes: unripe, ripe, and overripe. Our investigation shows that convolutional 
neural networks outperform almost all feature-based classifier. However, the 
penalized multinomial regression achieves the best accuracy of 86.27 % without 
any hyper-parameter tuning. Another insight is that different methods lead to the 
best sensitivity for different ripeness classes. Convolutional neural networks most 
accurately classify unripe strawberries, while ripe strawberries are best classified 
by penalized discriminant analysis and overripe berries are best classified by 
penalized multinomial regression.

Für die Reifedetektion von Obst und Gemüse anhand von Bilddaten werden häufig 
verschiedene Methoden des maschinellen Lernens eingesetzt. Bestehende Forschung 
in diesem Bereich konzentriert sich oft nur auf das Training von merkmalsbasierten 
Klassifikatoren oder auf die Verwendung von Rohbildern mit Convolutional 
Neural Networks. Ziel dieser Publikation ist es, beide Ansätze in Bezug auf 
ihre Klassifikationsgenauigkeit zu vergleichen. Um unsere Forschungsfrage zu 
beantworten, analysieren wir die Leistung von Convolutional Neural Networks und 
verschiedenen merkmalsbasierten Klassifikatoren auf einem balancierten Datensatz, 
der aus drei Reifeklassen von Erdbeeren besteht: unreif, reif und überreif. Unsere 
Untersuchung zeigt, dass Convolutional Neural Networks fast alle merkmalsbasierten 
Klassifikatoren übertreffen. Die penalisierte multinomiale Regression erreicht jedoch 
die beste Genauigkeit von 86,27 % ohne jegliches Hyper-Parameter-Tuning. Eine 
weitere Erkenntnis ist, dass unterschiedliche Methoden zur besten Genauigkeit für 
unterschiedliche Reifeklassen führen. Convolutional Neural Networks klassifizieren 
unreife Erdbeeren am genauesten, während reife Erdbeeren am besten durch die 
penalisierte Diskriminanzanalyse und überreife Erdbeeren am besten durch die 
penalisierte multinomiale Regression klassifiziert werden.
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Reifegradklassifizierung, Computer Vision, Maschinelles Lernen
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1. Introduction

One of the many areas where computer vision 
has become increasingly important in recent 
years is agriculture. Several applications such 
as crop health monitoring [1], growth stage 
detection [2], and automatic crop harvesting 
(e.g., [3, 4]) are only possible due to tremen-
dous progresses in computer vision. Traditional 
machine learning methods, such as linear re-
gression, have often proven unable to adapt to 
an ever-changing complex environment. For 
example, automatic fruit harvesting requires 
computer vision methods to locate the fruits, to 
identify the ripeness level of the fruits and to 
decide whether the ripe fruits are accessible to 
the harvesting robot [3]. 

Each of these tasks aroused a number of studies 
to develop and identify appropriate computer 
vision and machine learning methods. For ex-
ample, the problem of identifying the ripeness 
level of fruits is a classification problem that can 
be addressed with traditional supervised learn-
ing algorithms such as k-nearest neighbors [5], 
decision trees [6], support vector machines [7], 
naïve Bayes classifier [8], but also with modern 
computer vision methods such as convolution-
al neural networks (e.g., [9, 10]). However, due 
to the no-free-lunch theorem [11], none of the 
methods dominates the other methods in terms 
of accuracy. Recent research shows that the di-
mensionality and size of the training dataset, as 
well as the characteristics of the data, determine 
which method is appropriate for a classification 
task [12]. A major advantage of convolutional 
neural networks is their ability to integrate clas-
sification and feature extraction. Ripeness of 
fruits can be detected visually based on features 
such as color, shape or texture. Identifying fea-
tures that represent these characteristics and are 
able to discern between different ripeness levels 
is a very difficult task. For example, fruit color 
can be represented by several statistical features 
such as mean, median, standard deviation, kur-
tosis, skewness, minimum, maximum or mode 
that can be computed also in different color 
spaces such as RGB, HSV or Lab. Convolu-
tional neural networks, in contrast, only take the 
pixel matrix of an image and extract the infor-
mation that is necessary for a good classification 
from this matrix through different layers. 

As the number of characteristics that change at 
different stages of fruit ripeness is rather small 
and some simple statistical features can often 

describe these characteristics, it is questionable 
whether convolutional neural networks can re-
ally use the integration of feature extraction and 
classification to their advantage. Past research 
primarily focused exclusively on the usage of 
traditional methods or convolutional neural net-
works. We contribute to existing literature on 
automatic fruit ripeness prediction by compar-
ing several methods from these two approach-
es for strawberry classification based on image 
data to find out if CNNs lead to performance 
improvements over traditional methods.

The remainder of this paper is organized as 
follows. In Section 2, we review relevant liter-
ature on ripeness classification and classifica-
tion methods. In Section 3, we present the data 
and methodology used to compare the different 
classification methods. The results of this com-
parison are presented in Section 4. We conclude 
this paper in Section 5 with a discussion of the 
implications of our results and limitations of our 
study.

2. Related Work

Fruit ripeness classification based on image data 
has been addressed in many studies (e.g., [8, 
13, 10]). These studies differ in the fruits stud-
ied, the classifiers and the ripeness levels that 
are investigated. However, most studies focus 
only on traditional machine learning methods 
such as Naïve Bayes (NB), decision trees (DT), 
k-nearest neighbors (KNN) or support vector 
machines (SVM). 

Mazen et al. collected 300 images of green, 
yellowish green, mid-ripe and overripe banan-
as and converted them to HSV color space [8]. 
After removing the background, a ripeness fac-
tor was defined as the ratio of brown pixels out 
of all banana pixels. Texture features to quanti-
fy contrast, coarseness and direction were also 
extracted. SVM, NB, KNN, DT, discriminant 
analysis (DA) and fully connected neural net-
works (FNN) were trained as classifiers. With 
an accuracy of 97.75 % FNN was found to be 
the most accurate classifier. 

Indrabayu et al. developed a prototype for 
strawberry grading and sorting [14]. Strawber-
ries were placed on a conveyor belt and con-
tinuously photographed. For each of the three 
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ripeness classes unripe, partially ripe, and ripe 
100 images were collected and converted from 
RGB to HSV color space. After detecting and 
cropping the images to the relevant strawberry 
area, the mean values for all three color chan-
nels were extracted. An SVM with a radial basis 
kernel was trained as classifier and achieved an 
accuracy of 85.64 %. Interestingly, their classi-
fier reached a sensitivity of over 96 % for ripe 
and unripe strawberries, but a sensitivity of only 
62.94 % for partially ripe strawberries. This 
might be due to leaves covering the strawberries 
or background pixels still being present in the 
cropped images.

Also Castro et al. used traditional machine 
learning methods to automatically classify the 
ripeness stage of fruits [13]. They trained four 
classifiers (FNN, SVM, DT, and KNN) on three 
different color spaces (RGB, HSV, LAB) to 
classify cape gooseberries into seven ripeness 
stages. After collecting 925 images, the authors 
extracted the mean values of each color dimen-
sion in the color spaces. FNN, SVM, KNN per-
form better in the LAB color space, while DT 
achieves the highest classification accuracy in 
the HSV color space. The authors demonstrate 
that dimension reduction with principal com-
ponent analysis increases the accuracy of all 
classifiers. Overall, SVM proved to be the best 
classifier with an accuracy of 93.02 %.

A few studies investigated the performance of 
convolutional neural networks (CNN) for fruit 
ripeness classification.

Zhang et al., for example, trained a CNN to 
classify bananas into seven predefined ripe-
ness stages [10]. They collected 17,312 imag-
es over a 14-day period and sorted them into 
seven and twelve ripening stages based on their 
date of imaging. The proposed CNN consisted 
of three convolutional and max-pooling layers, 
followed by two fully connected layers. The au-
thors reached a classification accuracy of 94.4 
% and 92.4 % with respect to seven and twelve 
ripeness stages, respectively. Several misclas-
sifications were due to severe defects such as 
too many black spots. However, the model still 
achieved precision and recall above 90 %. The 
trained CNN achieved a higher accuracy in fine-
grained ripeness classification than state-of-the-
art machine learning methods based on SVM.

Sustika et al. explored different CNN archi-
tectures (AlexNet, MobileNet, GoogLeNet, 
VGGNet, Xception) for strawberry quality 
classification [9]. In total, the authors collected 
1,870 images of strawberries. The images were 
manually assigned to four quality levels. The 
first three levels were distinctions of strawber-
ries with good quality and the fourth level de-
scribed strawberries with bad quality (i.e., over-
ripe, damaged, or rotten strawberries). Models 
using different CNN architectures were trained 
and evaluated for their performance in a binary 
classification of strawberries (i.e., good and bad 
quality) and a classification into the four quality 
levels. The model trained with the VGGNet ar-
chitecture gave the highest performance in both 
binary classification and rank classification with 
an accuracy of 96.49 % and 89.12 %, respec-
tively.

We contribute to these studies by comparing tra-
ditional machine learning methods that require 
explicit feature extraction to convolutional neu-
ral networks that implicitly extract features. The 
next section describes the experimental setting 
used for this comparison.

3. Experimental Setting

We compare traditional machine learning meth-
ods to convolutional neural networks for clas-
sifying strawberries into one of the following 
three degrees of ripeness:

•	 Unripe: Firm strawberries with a greenish 
or whitish coloration in some parts on the 
visible side.

•	 Ripe: Slightly soft strawberries with an 
even deep red coloration on the visible 
side.

•	 Overripe: Strawberries with bruises and 
very soft spots on the visible side.

In Section 3.1, we describe the data collection 
and ground-truth labelling process. Section 3.2 
summarizes the applied training algorithms and 
Section 3.3 describes the steps applied to the im-
ages to prepare them for classification. Section 
3.4 presents the workflow and setup for training 
and evaluating the different classifiers.

Leon Binder, Michael Scholz, Roman-David Kulko
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3.1. Data
For our experiments we use unripe, ripe and 
overripe strawberries of the same cultivar. Pho-
tos of unripe and ripe strawberries are taken im-
mediately after buying the strawberries. Some 
of the ripe strawberries are stored at 8°C for 
three days to produce overripe strawberries. All 
strawberries are photographed under controlled 
conditions. Each strawberry is put on a black 
painted toothpick and photographed from at 
least four sides. We use a black background to 
facilitate extraction of the strawberries from the 
background during data processing. We collect 
a total of 666 images.

All strawberry images are classified inde-
pendently by three persons into one of the three 
classes – unripe, ripe and overripe. We finally 
form the ground truth as the majority vote of 
the three individual votes for each strawberry. 
Fleiss’s Kappa between the three raters is 0.649 
indicating substantial reliability of agreement 
according to Landis and Koch [15]. Further-
more, Cohen’s Kappa shows a moderate reli-
ability between raters A1 and A2 (0.5934) and 
between A2 and A3 (0.5501). Inter-rater relia-
bility is with a Cohen’s Kappa of 0.6490 sub-
stantial. The resulting ripeness level distribution 
is shown in Table 1.

 Unripe Ripe Overripe Total 
Number of Images 184 243 239 666 
Percentage 27.63 % 36.49 % 35.89 % 100.00 % 

Table 1: Ripeness level distribution

3.2. Classification Methods
Table 2 lists the classification methods with 
their abbreviations that we use in the following 
sections. We also note the input format for each 

method. Except for CNN, which uses raw pixel 
data, the classifiers are based on statistical fea-
tures such as the mean of color dimensions.

Abbreviation Method Input Format 
KNN k-Nearest Neighbors Statistical Figures 
C5 C5.0 Decision Tree Statistical Figures 
NB Naïve Bayes Statistical Figures 
PDA Penalized Discriminant Analysis Statistical Figures 
PMR Penalized Multinomial Regression Statistical Figures 
FNN Fully Connected Neural Network Statistical Figures 
CNN Convolutional Neural Network Pixels 

Table 2: Methods

3.3. Data Preparation
First, we prepare the raw images to i) improve 
the classification accuracy and ii) make the im-
ages usable for convolutional neural networks. 
Images are taken in raw format (CR2) with a 
resolution of 5,472 x 3,648 pixels. Images at this 
size are too large for convolutional neural net-
works even when trained on dedicated GPUs. 
The original images also contain several data 
related to the background, which is meaningless 
for the classification task. With data preparation, 
we aim to remove background information and 
downscale the images. Specifically, data prepa-
ration consists of the following four steps:

1. �Loading: We load an image from the raw im-
age format.

2. �Removing the background: Although we use 
a black background and the strawberries are 
put on a black toothpick, the pixels that do not 
represent the strawberry do not represent pure 
black. This is due to some light reflections as 
well as strawberry juice running down the 
toothpick. We thus remove background data 
to avoid the background and especially the 
strawberry juice on the toothpick from affect-
ing the classification. Specifically, we first 
convert the image from RGB to LAB color 
space. We use the B-dimension (blue-yel-
low) to identify background pixels. Morpho-
logical transformations and median blur are 
necessary to avoid losing dark pixels within 
the strawberry itself. The resulting threshold 

A Comparison of Several Methods for Ripeness Classification of Strawberries
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mask is a 2-dimensional matrix with Boolean 
values that indicates for each pixel in the im-
age whether it is part of the background or 
foreground. We then apply this mask on the 
image so that all background pixels in the re-
sulting image are transformed to transparent 
pixel.

3. �Cropping and resizing: The next step is to 
crop the image so that the strawberry fills 
the whole image. This results in different im-
age sizes as the strawberries are of different 

sizes. Since neural networks require a fixed 
structure, we resize the cropped images con-
sistently to an image resolution of 512 x 512 
pixel. 

4. �Saving: At the end of the data preparation 
pipeline, each image is saved in PNG format.

Figure 1 displays the effect of the preprocessing 
pipeline for an example image. Furthermore, 
Figure 2 shows one example image for each of 
the three ripeness classes.

Figure 1: Example of an original and preprocessed image

unripe ripe overripe

Figure 2: Examples for unripe, ripe, and overripe strawberries after preprocessing

Traditional machine learning methods and fully 
connected neural networks operate with manual 
features. We thus extract five statistical features 
from each image: the mean, standard deviation, 
median, kurtosis and skewness of the three cor-
responding channels in RGB, HSV and LAB 
color spaces. Using statistical features instead 
of pixel data involves a loss of information. 
However, as the number of statistical features 
is rather marginal compared to the number of 
pixel-based features, the use of statistical fea-
tures is accompanied by a significant reduction 
of model complexity and hence a substantial 
reduction in training time. Table 3 shows the 
extracted features for the three example images 
from Figure 2. 
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RGB HSV LAB 

Class Statistic R G B H S V L A B 

Unripe 

mean 0.73 0.31 0.13 22.85 0.81 0.73 149.82 52.37 15.20 
sd 0.19 0.15 0.12 26.81 0.17 0.19 50.64 16.19 7.41 
median 0.74 0.30 0.10 15.54 0.86 0.74 144.93 51.52 17.28 
kurtosis -0.31 -0.66 0.99 93.98 -0.43 -0.31 0.08 -0.16 -1.04 
skewness -0.38 0.40 1.17 7.93 -0.83 -0.37 0.55 0.15 -0.48 

Ripe 

mean 0.78 0.24 0.21 215.72 0.78 0.79 149.36 34.93 18.40 
sd 0.16 0.22 0.16 164.35 0.19 0.16 70.39 14.96 7.61 
median 0.80 0.16 0.16 351.27 0.84 0.80 127.97 31.58 19.97 
kurtosis 0.90 -0.64 1.10 -1.85 -0.47 0.90 -0.25 1.24 -0.58 
skewness -0.83 0.78 1.25 -0.35 -0.82 -0.83 0.84 0.96 -0.58 

Overripe 

mean 0.84 0.30 0.33 256.63 0.69 0.84 183.03 24.86 17.73 
sd 0.16 0.24 0.19 151.24 0.21 0.16 83.03 13.08 6.65 
median 0.87 0.24 0.28 349.90 0.72 0.87 164.41 23.01 18.66 
kurtosis 1.56 0.18 1.49 -1.03 0.23 1.56 0.29 2.99 -0.43 
skewness -1.13 0.92 1.24 -0.97 -0.73 -1.13 0.87 1.13 -0.51 

Table 3: Extracted features from the three example images in Figure 2

One insight regarding the three example straw-
berries from Table 3 is that with increasing 
ripeness, the statistics of the B dimension in the 
RGB color space also increase. The increase in 
mean and median can be associated with the 
increasingly darker shade of red. The tenden-
cy can also be seen in the mean, median and 
standard deviations of the hue (H), with a big 
increase from the unripe to the ripe strawberry 
image. While the unripe strawberry has a more 
warm-reddish hue, the ripe and overripe straw-
berry become increasingly magenta in color.

3.4. Model Building & Evaluation

3.4.1. Traditional Methods
The models based on the traditional methods 
are trained with the caret package in the R pro-
gramming language. We experiment with dif-
ferent data preprocessing techniques and finally 
use mean-std-standardization for NB, PDA and 
PMR, min-max-normalization for KNN, and no 
preprocessing for DT.

We divide the data into 80 % for training and 
validation and 20 % for estimating the test ac-
curacy of the traditional classification methods 
(KNN, C5, NB, PDA, PMR). We perform a 10-
fold cross validation for computing the training, 
validation and test accuracy. For the traditional 
methods, we decide not to tune hyperparame-
ters in order to keep the training effort as low 
as possible.

3.4.2. Fully Connected & Convolutional 
Neural Networks
Neural networks have the ability to learn com-
plex relationships between inputs and the cor-
responding output. However, they have the 
disadvantage that many hyperparameters need 
to be tuned to achieve at least moderate results. 
We used Python 3.6 with Tensorflow 1.14 for 
hyperparameter tuning, training, validation and 
testing of the fully connected neural networks 
and the convolutional neural networks.

Our CNNs require feature-wise centering and 
normalization of the standard deviation of the im-
ages. We therefore extracted the mean and stand-
ard deviations of the color channels in the training 
data and used these values to normalize the imag-
es in the training, the validation and testing sets. 

It is also noticeable that CNNs tend to overfit 
easily. Therefore, we artificially increased the 
amount of training data with data augmentation. 
We applied the following four augmentation 
steps to the images: First, we rotated images 
between 0 and 30 degrees. Second, we shifted 
the images horizontally and vertically between 
0 and 30 %. Third, we randomly zoomed into 
the images with a zoom factor between 0 and 
10 %. And fourth, we randomly flipped images 
horizontally. Figure 3 shows some examples for 
augmented images. The augmentation methods 
do not change the ground-truth of the images but 
ensure that the classification models are trained 
on a greater variety of data. 

A Comparison of Several Methods for Ripeness Classification of Strawberries
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Figure 3: Examples of the transformations in the data augmentation step

FNNs mostly consist of Dense layers, with the 
possibility of intermediate Dropout layers to 
prevent overfitting. CNNs, on the other hand, 
consist of a juxtaposition of Convolution and 
Pooling layers, that enable automatic feature 

extraction. The feature extraction layers are 
followed by one Flatten layer and at least one 
Dense layer. A selection of layer-specific hyper-
parameters is shown in Table 4.

Layer type Hyper-Parameters 
Dense Number of units, activation function, bias, initializer / regularizer / constraint 
Convolution Number of filters, kernel size, activation function, strides, padding, dilation, bias, 

initializer / regularizer / constraint  
Pooling Pooling size, padding size, strides 
Flatten  
Dropout Percentage 

Table 4: Layer-specific hyper-parameters

For the FNN and CNN we also split the data 
in 80 % for training and validation and 20 % 
for hyperparameter tuning and model accuracy 
testing. The parameters are tuned based on the 
same data splits. We computed the test accuracy 
of the five sets of parameters for FNN and CNN 
leading to the highest validation accuracy. The 
test accuracy is estimated based on a 10-fold 
cross validation.

4. Results

In this section, we summarize the results of our 
experiments. We first present the results for the 
classification accuracy of all investigated meth-
ods. Thereafter, we focus on the FNN and CNN 
and discuss the effect of training epochs and fil-
ter layers on the classification accuracy.

 Accuracy 
 Training Validation Test 
 Mean Sd Mean Sd Mean SD 

KNN 0.7977 0.0090 0.8194 0.0842 0.8351 0.0206 
C5 0.7769 0.0073 0.7633 0.0539 0.7828 0.0206 
NB 0.8048 0.0066 0.8084 0.0647 0.7746 0.0172 

PDA 0.8381 0.0060 0.8441 0.0476 0.8216 0.0042 
PMR 0.8594 0.0094 0.8875 0.0477 0.8627 0.0072 
FNN 0.8897 0.0166 0.8760 0.0469 0.8239 0.0146 
CNN 0.8477 0.0193 0.8704 0.0460 0.8373 0.0227 

Table 5: Accuracy of the different methods based on cross-validation

Leon Binder, Michael Scholz, Roman-David Kulko
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Figure 4: Accuracy of the PMR with increasing data size via data augmentation

We also investigated the effect of data augmen-
tation on the performance of the traditional 
methods. Figure 4 illustrates, as an example, the 
training, validation and test accuracy for the Pe-
nalized Multinomial Regression (PMR) and dif-
ferent augmentation factors that lead to a 2-, 5-, 
7- and 10-times larger data size. It is apparent 
that data augmentation likely causes the prob-
lem of overfitting. This pattern has been found 
for all methods except C5, where the data aug-
mentation leads to a performance improvement 
of over 7%.

Table 5 indicates that CNN does not lead to 
the best performance regarding the strawberry 
images and that researchers should particularly 
consider using PMR for this classification task 
due to a higher accuracy and a lower compu-
tational effort. However, the results in Table 5 
refer to the total classification accuracy in a bal-
anced dataset. We also computed the accuracy 
and number of misclassifications for each class 
separately in order to get some further insights 
about the performance of the tested classifica-
tion methods. Therefore, we computed the mean 
classification sensitivities as well as the mean 
number of correct and incorrect predictions for 
each class using a 10 cross-validation. The re-
sults are depicted in Table 6.

Method 
Class Unripe Class Ripe Class Overripe 

Prediction Prediction Prediction 
Recall U R O Recall U R O Recall U R O 

KNN 0.8027 29.7 6.5 0.8 0.8633 1.5 42.3 5.2 0.8312 1.9 6.2 39.9 
C5.0 0.7757 28.7 7.3 1.0 0.7735 2.5 37.9 8.6 0.7979 1.4 8.3 38.3 
NB 0.8054 29.8 7.1 0.1 0.7959 2.4 39.0 7.6 0.7292 2.0 11.0 35.0 
PDA 0.7324 27.1 9.9 0.0 0.9184 0.0 45.0 4.0 0.7917 0.0 10.0 38.0 
PMR 0.8541 31.6 4.2 1.2 0.8837 1.0 43.3 4.7 0.8479 1.0 6.3 40.7 
FNN 0.8459 31.3 5.7 0.0 0.8000 6.5 39.2 3.3 0.8312 0.0 8.1 39.9 
CNN 0.8595 31.8 5.2 0.0 0.8796 2.5 43.1 3.4 0.7771 0.1 10.6 37.3 

Table 6: Mean sensitivity and classification count for classes of the models in Table 5

The unripe strawberries were very rarely or 
never falsely classified as overripe by the 
classification methods. The same applies to 
the overripe strawberries. This indicates that 
unripe and overripe strawberries can be well 
separated from each other. Table 6 also demon-
strates that different classification methods 
perform best in predicting strawberries of the 
three ripeness classes. CNN most correctly 

classified unripe strawberries, whereas ripe 
strawberries were best identified by a PDA and 
overripe berries were most correctly classi-
fied by a PMR. This implies that our proposed 
CNN should be used in situations where most 
strawberries are unripe, and ripe and overripe 
berries need to be sorted out.

A Comparison of Several Methods for Ripeness Classification of Strawberries
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4.1. Effect of Training Epochs
In the following, we present the effect of the 
number of training epochs on classification ac-
curacy for one of the FNN and one of the CNN 
models trained during cross validation. We 
trained an FNN consisting of 5 dense layers with 
a total of 8,418 weights. The first four hidden 
layers have 45 neurons each and use sigmoid 

activation functions. The last layer includes 
three output neurons corresponding to the three 
ripeness classes. The model was trained for 200 
epochs using the Adam optimizing algorithm, 
categorical cross entropy as loss function and 
a training batch size of 16. Before training, we 
applied a min-max-normalization to the input 
features.
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Figure 5: Progression of the accuracy and categorical cross entropy of the fully connected neural network

Figure 5 shows that the fully connected neural 
network reached training and validation accuracy 
of over 80 % already after 14 epochs. The addi-
tional training only marginally improved the val-
idation accuracy and the loss, respectively. Fur-
thermore, the model starts to overfit the training 
data from epoch 88 as indicated by a training loss 
that is lower than the validation loss.

The CNN we are considering here has the fol-
lowing architecture: 6 * (Conv2D  MaxPool-
ing2D  Dropout)  Flatten  3 * Dense. It 
consists of 22 layers and 52,419 weights and 

was trained for 100 epochs using the RMSprop 
optimizing algorithm, categorical cross entropy 
as loss function and a train batch size of 16. All 
Convolutional layers consist of 32 filters with 
kernel size of (3, 3) and relu activation func-
tions. We defined a pooling size of (2, 2) in the 
MaxPooling layer and set the dropout rate in the 
Dropout layers to 0.2. The first two Dense layers 
after the Flatten layer each include 32 neurons 
with a relu activation functions. Like the fully 
connected neural network, the last Dense layer 
had 3 output neurons with softmax activation 
functions.
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Figure 6: Progression of the accuracy and categorical cross entropy of the convolutional neural network

The CNN required 45 epochs to reach a training 
accuracy of 80 %. Figure 6 also shows that the 
validation accuracy and loss fluctuate more than 
they did for the fully connected neural network. 
This means that small changes to the weights, 
which improve the training accuracy, can have 
a very strong impact on the validation accuracy.
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4.2. Visualization of Filter and 
Activation maps
We extracted the 32 filters in the first layer of 
the convolutional network presented in the pre-
vious subsection to get a better picture of how 
this classifier works and why the validation ac-

curacy might be prone to such high variance. 
The 3 x 3-pixel filters displayed in Figure 7 are 
difficult to interpret. The identified patterns are 
not as clearly describable as it is the case in so-
phisticated models such as VGG16 (e. g., edge 
filters, blob filters).
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Figure 7: Trained filters in the first convolutional layer

Figure 8 visualizes the activation maps after ap-
plying the 32 filters from Figure 7 on the unripe 
strawberry from Figure 2. The activation maps 
show to what extent and in which image regions 
the patterns of the filters were found in the im-
age. Red areas indicate high and blue areas a low 
activation regarding a specific filter. Figure 8 
demonstrates that some filters are trained to de-
tect edges (e.g., filters 11, 24, 30 and 31) where-
as others are trained to identify rather greenish 
(e.g., filter 18) or reddish areas (e.g., filters 3 and 
32) of the strawberries. Filters 16 and 28 detect 
the transparent background of the images. Only 
a few of these filters correspond to patterns that 
are obviously meaningful for classifying straw-
berries according to their ripeness. Some of the 
filters might detect patterns that are randomly 
correlated with the ripeness level in the training 
data. For example, if most unripe strawberries 
in the training set are prone to chromatic aberra-
tion, some filters might be trained to detect this 
image error rather than to separate unripe from 
ripe and overripe strawberries. Giving too much 
weight to such filters leads to rather low valida-
tion accuracy, which is a possible explanation 
for the high variance of the validation accuracy 
of our trained convolutional neural network.

Some of the more relevant filters could be ex-
tracted from the CNN and used to generate addi-
tional features for the traditional methods. Filter 
13, for example, seems to differentiate between 
areas with high and low red intensity. The ac-
tivation map helps to identify interesting addi-
tional statistical features that might improve the 
prediction accuracy.
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Figure 8: Activation maps after the filter in the first convolutional layer are applied

5. Conclusion

In this paper, we compared convolutional neural 
networks with some traditional machine learn-
ing methods for classifying strawberries into 
three ripeness classes.

Our results show that convolutional neural net-
works do not generally lead to a higher per-
formance in case of image-based classification. 
With an accuracy of 83.73 % convolutional 
neural networks performed worse than penal-
ized multinomial regression (86.27 %) in our 
study. The accuracy of most other traditional 
feature-based machine learning methods is 
comparable to convolutional neural networks, 
with the exception of Naïve Bayes and deci-
sion trees. This indicates that visual differences 
between ripeness levels of strawberries can be 
explained using fairly simple color-based sta-
tistics. Convolutional neural networks, as well 
as fully connected neural networks also have 
the disadvantage that it is usually impossible 
to explain why a strawberry is assigned to a 
certain class. In addition, there is no specific 
rule for determining the structure of a network. 
As a result, an extensive search for convincing 
hyperparameters is necessary. Although tra-
ditional methods also consist of some hyper-
parameters (e.g., penalty weight), the number 
of hyperparameters in these methods is much 
lower and the accuracy is often quite high even 
without hyperparameter tuning. In this study, 

we only tuned hyperparameters of fully con-
nected neural networks and convolutional neu-
ral networks. 

Our results also show that the classifier with the 
best overall test accuracy does not necessarily 
best classify strawberries of all three ripeness 
levels. Unripe strawberries are best identified 
by convolutional neural networks (accuracy: 
85.95 %), whereas ripe strawberries are best 
classified by penalized discriminant analysis 
(accuracy: 91.84 %) and overripe strawberries 
are best classified by penalized multinomial 
regression (accuracy: 84.79 %). Therefore, re-
searchers and practitioners should consider their 
specific classification situation when selecting 
an appropriate classifier. If most strawberries 
are ripe and the goal is to sort out unripe as well 
as overripe strawberries, our results recommend 
using a penalized discriminant analysis. These 
results furthermore demonstrate that there is 
no single classifier that performs best in all sit-
uations. Implementing ensemble classifiers is 
hence worthwhile in many scenarios ([16, 17]). 
Especially selective ensembles that statically or 
dynamically select classifiers for an ensemble 
could be useful for classifying strawberries ac-
cording to their ripeness. These ensemble mod-
els are suitable for selecting ensembles based on 
some prior information about the distribution of 
the ripeness levels. Our study is subject to three 
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limitations. First, we used a balanced training 
and test set. Real datasets are usually unbal-
anced, which could affect the performance of 
the classifiers compared in our study. Recent re-
search has shown that the performance is lower 
when an unbalanced dataset is used for training 
[12]. Future research should thus also compare 
convolutional neural networks with traditional 
machine learning methods on unbalanced data-
sets. Second, we used only one dataset in this 
study. Investigations on other datasets are nec-
essary to test the robustness of our results. And 
third, we restricted our comparison to individual 
classifiers. Several recent studies have provided 
evidence that ensembles outperform individu-
al classifiers in several classification tasks [12, 
16]. Thus, comparing convolutional neural net-
works with ensemble classifiers for identifying 
the ripeness level of fruits provides a further av-
enue for future research.
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