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Usage Profiling in Electric Vehicles

Diana Schramm* Nicki Bodenschatz* Andreas Berl*

In the overall effort of reducing CO2 emissions, the significance of alternative 
drive engines is growing. The transition from combustion engine vehicles to 
electric vehicles is high on the political agendas, with governments providing 
extensive funding to promote electric mobility. However, there are still challenges 
that hamper the dissemination of electric vehicles. One of those challenges is 
the limited range and the resulting range anxiety. Displayed vehicle range data 
contribute to this, as they are relatively inaccurate and might vary quite strongly 
during individual trips. This problem could be addressed by personalizing the 
range display according to the driving style of the current driver. Driver assistance 
services, like distance control, are becoming increasingly personalized nowadays, 
however, they are predominantly designed for internal combustion engine 
vehicles. In this paper, relevant input parameters for classifying the driving styles 
of electric vehicle users are identified. Furthermore, a system based on real-life 
driving data is developed to determine the driving style. Real-life driving data 
were collected in experiments and used to profile the driving style by means 
of fuzzy logic. Based on the results, an approach for a realistic classification of 
driving styles of electric vehicle users is discussed.

Die Wichtigkeit alternativer Fahrantriebe zur Reduktion von CO2-Emissionen wird 
immer stärker. Der Umstieg von Verbrenner- auf Elektrofahrzeuge wird auch immer 
nachdrücklicher von der Politik gewünscht und gefördert. Jedoch gibt es immer noch 
Aspekte, die das Wachstum der Elektromobilität einbremsen. Einer dieser Aspekte ist 
die begrenzte Reichweite und die daraus resultierende Reichweitenangst. Auch die 
Reichweitenanzeigen in den Fahrzeugen tragen hierzu bei, da diese relativ ungenau 
sind und während einer Fahrt stark schwanken. Dies könnte durch die Personalisierung 
der Reichweitenanzeigen auf der Grundlage des Fahrstils des aktuellen Fahrers 
verbessert werden. Fahrerassistenzsysteme wie Abstandhalter werden heutzutage 
immer mehr personalisiert, jedoch sind diese meist für Verbrennerfahrzeuge ausgelegt. 
In dieser Arbeit werden die wichtigsten Parameter zur Bestimmung des Fahrstils 
bei Elektrofahrzeugen identifiziert und ein System entwickelt, welches auf Basis 
realer Fahrdaten den Fahrstil bestimmt. In Experimenten wurden reale Fahrdaten 
aufgezeichnet, welche zur Bestimmung des Fahrstils mit Hilfe von Fuzzy Logic 
genutzt wurden. Darauf aufbauend wird ein Ansatz diskutiert, der eine realistische 
Klassifikation des Fahrstils in Elektrofahrzeugen ermöglicht.
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1. Introduction

Electric vehicle (EV) technology, especially 
EV battery technology, is constantly improving. 
Thus, the potential of EVs to reduce CO2 
emissions [1] increases under the premise that 
the charged energy originates from regenerative 
sources. EVs can therefore reduce our ecological 
footprint and bring a real environmental benefit. 
Introducing more EVs may also mitigate health 
risks like fine dust pollution or slow down 
global warming [2]. There are, however, still 
issues concerning the attractiveness of EVs 
which need to be tackled in order to increase 
the number of EVs in our daily life. One issue 
is the lower range in comparison to combustion 
engine vehicles (CEV). Therefore, one of the 
biggest anxieties of EV drivers is not being able 
to reach their destination due to the low range 
and the imprecise remaining range calculation 
of the EV. 

To address this issue, the calculation of the 
remaining range has to be improved in order 
to turn range prediction more precise. To this 
end, EV characteristics like battery type and 
age, as well as topological information like 
the elevation difference along the route are 
important. However, the driver himself is 
another relevant factor for determining a precise 
model. His/her driving style and behavior can 
have a huge impact on the driving range of an 
EV [3]. A sportive and very fast driver will have 
a significantly higher energy consumption than 
a very slow and foreseeing driver. Here, the 
differences in driving behaviors between EV 
and CEV users are relevant, as shown in [4]. 
The constant torque produced by EVs brings 
the benefit of maximum acceleration at any 
time. In a CEV, acceleration depends on the 
engine’s rpm value (revolutions per minute). 
Another difference lies in braking behavior, 
as the EV regenerates energy when there is no 
acceleration and while braking. This process is 
called regenerative braking or recuperation. It 
affects the braking behavior of the driver quite 
strongly as the energy recovery mechanism 
already slows down the vehicle and less braking 
activity from the driver is necessary. Taking this 
into account, integrating the driving behavior 
could bring a real benefit in terms of improving 
the accuracy of range calculation for EVs. 
Besides, EV drivers’ behavioral profile data may 
also be used for other driver assistance services, 
ultimately increasing user acceptance. 

In a first step, a method for improving range 
prediction by usage profiling is discussed. EV 
drivers’ usage profiles are directly derived from 
driving data originating from the EV’s CAN 
bus. The Controller Area Network (CAN) bus 
is the EV’s internal communication system. 
The proposed system is based on real driving 
data and is capable of identifying the driving 
style whilst driving, which may serve as an 
input for a range model that is constantly being 
updated during a trip. To this end, we analyze 
the existing related work of usage profiling 
methods in Section 2. We present our approach 
and discuss first results in the sections 3 to 5. 
Section 6 provides a conclusion.

2. Related work

A broad range of literature discusses the 
problem of range anxiety as a barrier to going 
electric. To tackle the problem of range anxiety, 
trust in range estimation needs to be increased 
[5], which may be achieved by enhancing range 
calculation accuracy. Different factors influence 
an EV’s range, particularly route properties 
like the elevation profile, but also weather 
conditions, e.g. the outside temperature, as well 
as the individual driving style. The aspects of 
route properties and weather conditions were 
already addressed in an earlier publication 
[6]. We argue that taking the driving style into 
account and combining it with these indicators 
may substantially increase the accuracy of 
range estimations. Driving style profiling might 
contribute to a more accurate prediction of 
battery range and increase the trust in EVs and 
is therefore the focus of this paper.

One way to categorize existing studies on 
driving style classification is by the area in 
which the driving style is employed as a factor. 
Some researchers focus on driving safety. Their 
aim is thus to group drivers into different risk 
categories [7, 8]. Other research focuses on 
vehicle dynamics control [9] and the adoption of 
assistance services such as lane change or cruise 
assistance services [10]. Finally, the economic 
and ecological efficiency of driving behaviors is 
an additional area of focus [11], and the present 
paper belongs to that category.

In the above-mentioned research areas, user 
profiling is usually based on driving behavioral 
data generated from CEVs. Mostly data on gas 
pedal operation, brake pedal operation and the 
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distance kept to the vehicle ahead are used to 
classify driving behaviors. These data can be 
grouped into three different categories [10]:

• Driving behavior signals  
e.g. gas pedal operation, brake pedal 
operation and steering angle

• Vehicle status signals 
e.g. velocity, acceleration and engine speed

• Vehicle position signals 
e.g. distance to the vehicle ahead, relative 
lane position and yaw angle

Different approaches are used to determine the 
driving style [12]. Some less common methods 
include correlation analysis [13], different 
clustering methods [7, 14] or data-dependent 
pointer models [12]. However, the majority of 
studies uses fuzzy logic as the common method 
for usage profiling in vehicles [8, 12, 15, 16].

Fuzzy logic depends on prior knowledge of 
the groups where the data can be divided into. 
However, fuzzy rules have no exact boundaries; 
they rather are descriptive rules by which 
arithmetic operations can be carried out. Fuzzy 
rules can describe behavior, for example the 
aggressiveness of a driver.

If gap time is If accelerator pedal 
rate is

If brake pedal  
rate is 

Then driver  
index is

Low Low Low Less aggressive

High Low Low Cautious

Low High Low Aggressive

Low Low High Aggressive

Low High High Aggressive

High High High Less aggressive

High Low High Cautious

High High Low Less aggressive

Table 1: Fuzzy rules of aggressiveness of a driver [17]

Table 1 presents a common example for 
fuzzy rules that allow to distinguish between 
aggressive or cautious driving behaviors. It 
is apparent that a user who is pressing the 
accelerator and brake pedals only gently while 
delaying the subsequent pedal pressing (gap) 
is most likely less aggressive than others. On 
the contrary, aggressive users tend to use both 
pedals with nearly no delay, while either or 
both pedals are pressed at a high rate. In this 
way, different user classes can be described and 
modelled according to these fuzzy rules. 

Dörr et al. proposed an online system for driving 
behavior profiling in CEVs [18]. This profiling 
is done on the basis of data from the CAN bus 
of the vehicle and is calculated whilst driving. 
They propose three levels of driving styles: 
sporty, normal and comfortable. Parameters 
that are taken into account include speed, 
longitudinal acceleration, the time gap between 
two vehicles or the street type. Different driving 

parameters for different street types were also 
used for profiling. The driving behavior was 
determined by fuzzy logic and was tested 
through simulation only. 

In this paper, we adhere to the basic concept of 
Dörr et al. The approach is adapted to EVs and 
their corresponding requirements. Furthermore, 
real-life driving data are used. The proposed 
system receives data directly from the EV in 
real time, processes and calculates the driving 
style and thus builds the basis for analyzing the 
driving behavior after or even during a trip. 

3. Data Basis and Experiments

Driving behavioral profiling in this work is based 
on real-life driving data from EVs. Driving 
data therefore need to be transferred from EVs. 
The used data collection consists of multiple 
components, as it can be seen in Figure 1. 
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Figure 1: Data acquisition system

Data are acquired via additional hardware 
located in the EV and a software component, the 
so-called InCarApp, which also displays a range 
estimation based on altitudinal differences along 
the route and the current temperature. At first, an 
OBD (on-board diagnostics) module allows the 
acquisition of driving data from the EV’s CAN 
bus. In a second stage, a tablet computer with 
the installed InCarApp receives the CAN data 
via Bluetooth. It filters, decodes and transmits 
them over a secured cellular internet connection 
to a server. This system allows collecting a 
range of different parameters from the EV that 
are relevant to the driving behavior. 

As to driving behavior analysis in the context 
of EVs, the relevant data differ from those of 
CEVs. The constant torque and the regenerative 
braking, known as recuperation, entail a very 
different pedal usage pattern compared to CEVs. 
Furthermore, there is an eco-mode or eco button 
in most EVs. Using this functionality does not 
only affect the intensity of acceleration, as it 
does in CEVs, but also brake pedal operation. 
On the one hand, acceleration will be decreased, 
however on the other hand, recuperation will 
be increased. This results in a higher impact 
of the eco-mode on pedal usage in EVs, as 
compared to CEVs. Therefore, the approach 
of analyzing EV usage has to be adjusted with 
respect to several new dimensions, like the 
influence of recuperation on the brake pedal. To 

demonstrate the feasibility of this new method 
of usage profiling described in this paper, it is 
currently designed for and tested on Renault 
ZOEs. Moreover, driving behavior profiling 
is only done for single trips, because the way 
an EV is driven by an individual person may 
differ from trip to trip, depending on various 
influencing factors like the current mood or 
traffic conditions. 

Initial experiments served to identify the relevant 
data for usage profiling. For these experiments, 
a 9 km test route consisting of 50% city and 50% 
rural streets and minimal altitudinal differences 
was used. The test route was driven three times 
each for the chosen driving behavior-related 
classes “careful”, “normal” and “sportive”. For 
this experiment, drivers were instructed to stick 
to the prespecified driving behavior as long as 
traffic and safety allowed it. One driver employed 
all three investigated driving behaviors. The 
experiments were conducted in a row in order 
to minimize temperature differences and traffic-
related influences.

After these initial experiments, the driving data 
were analyzed. The results of this analysis are 
described in the following section.

The intensity of accelerator pedal input differs 
significantly between the different driving 
behaviors. This is shown in Figure 2.

Figure 2: Histograms of acceleration pedal data for driving styles: careful - normal - sportive

Usage Profiling in Electric Vehicles
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This figure shows the different driving 
styles and their corresponding histograms: 
careful – normal – sportive (from left to 
right). The x-axis represents the intensities of 
accelerator pedal inputs shown as percentages, 
and the y-axis displays the frequency of the 
different intensities. To better identify the 
driving styles, frequencies of above 30 are not 
shown in this figure, however, they are later used 
for the analysis. This provides the possibility of 
gaining a better insight into higher intensities 
of accelerator pedal input as they demonstrate 
the key differences in driving styles. It is clearly 
shown that the range of intensities differs 
strongly in connection with the various driving 
styles as is marked with arrows. Careful drivers 
show a maximum intensity of accelerator 

pedal input of 40 %, normal drivers display 
intensities of up to 60 % and sportive drivers 
show intensities of up to 90 %. Consequently, 
the average values differ, too: for the careful 
driving style the average amounts to 9.6195 %, 
for the normal driving style it is 10.6723 % and 
for the sportive driving style it is 12.2748 %. 
These average values may also serve to identify 
the different driving styles.

The intensity of brake pedal operation is 
identified as the second indicator for usage 
profiling. Here too, it becomes obvious that 
there are differences in brake pedal intensity 
patterns, however, not in all driving styles. The 
frequencies of different intensities of brake 
pedal operation are shown in Figure 3.

 Figure 3: Histograms of brake pedal data for driving styles: careful - normal - sportive

As in the histograms of the accelerator pedal 
data, the order from left to right is careful, 
normal and sportive. The x-axis shows brake 
pedal intensity as percentages, and the y-axis 
displays the frequency of the different intensities. 
It is obvious that the differences between the 
various driving styles are not as striking as the 
differences in connection with the accelerator 
pedal. This constitutes one important difference 
between EVs and CEVs. As EVs recover energy 
when the accelerator pedal is not hit, the brake 
pedal is much less used and there is also less 
need for strong braking action. Thus, differences 
that seem small at first sight are also of 
relevance to driving behavior. It was shown that 
in comparison to the careful driving behavior, 
there is a higher frequency of the 10–20 % brake 
pedal intensity in normal driving behavior. For 
the sportive style, the frequency of between 
10–20 % is less often documented, however, a 
high frequency of the 20–30 % brake intensity 
is registered. Furthermore, there are brake pedal 
intensities of above 30 %, unlike in normal or 
careful driving styles. These differences also 

become apparent when looking at the average 
values of brake pedal intensities. The average 
of brake pedal intensity for the careful driving 
style amounts to 2.3349 %, for the normal 
driving style it is 2.6178 % and for the sportive 
driving style it is 4.5536 %.

The eco-mode button is another influencing 
factor. When the driver activates the eco-mode 
button it will decrease the intensity of the 
accelerator pedal and increase energy recovery. 
Accelerator pedal and brake pedal patterns will 
therefore be different when the eco-mode button 
is switched on. A normal driver is more likely 
to activate the eco-mode button than a sportive 
driver. However, when the eco-mode button 
is activated, the accelerator pedal needs to be 
pushed stronger in order to achieve a certain 
degree of acceleration and thus this specific 
accelerator pedal pattern could be classified 
as sportive, too. Hence the ratio of eco-button 
usage during a trip is a crucial parameter for 
usage profiling in electric vehicles.
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We therefore identify the following parameters 
as relevant data:

• Intensity of accelerator pedal operation
• Intensity of brake pedal operation
• Use of eco-mode button

4. Design of Usage Profiling

In the following section, the general processes of 
fuzzification and defuzzification are explained. 
Furthermore, the specific design of usage 
profiling for EVs is described.

The fuzzy logic is an extension of the 
classical propositional or Boolean logic. 
While propositional logic is only capable 
of differentiating between true and false (an 
element is part of a set or not), fuzzy logic also 
allows statements to be partly true or false. 
Differentiating subsets provides more room for 
interpretation. Membership functions, the so-
called fuzzy sets, are established to represent the 
degree of affiliation of an element to a group. 
The degree of membership of an element in a 
given set is then represented as a number from 0 
to 1. 0, if the element is not part of the set (false) 
and 1, if it is completely part of the set (true). 
Every number in between shows how strongly 
an element belongs to a set. The accelerator 
pedal intensity can be considered as an example, 
for it can vary between “weak”, “middle” or 
“strong”, as can be seen in Figure 4. For our 
first approach, the fuzzy set was modelled with 
triangle and trapezoid functions.

Figure 4: 
Fuzzification example of the accelerator pedal intensity

The x-axis represents the accelerator pedal 
intensity as a percentage and the y-axis indicates 
the degree of fulfilment with respect to the 3 
different linguistic terms. Weak is thus 0%, 
middle is 50% and strong would be 100%. These 
are called linguistic terms and the boundaries 
between these categories are fluid. Hence a 

distribution will be defined for each term that 
describes the degree of fulfilment. Here it can be 
seen that one input value can correlate to more 
than one linguistic term. An accelerator pedal 
intensity of 45 % would fulfil the term “weak” 
by 10 %, however, the term “middle” would be 
fulfilled by 90 %. This is called fuzzification. 
Different membership functions can be used 
for fuzzification. In Figure 4, the very common 
triangular membership function is used. The 
trapezoid function, which is also frequently 
employed, will be mentioned in a later section 
of this paper.

Rules can be employed to connect the 
fuzzifications of the different input parameters. 
One rule consisting of the input parameters 
“average of accelerator pedal intensity” and 
“average of brake pedal intensity” and the 
corresponding linguistic terms “low”, “medium” 
and “high” can be described as follows:

IF acceleratorpedalAverage IS high AND 
brakepedalAverage IS high THEN drivingStyle 
IS sportive

In fuzzy logic, as many rules as needed can 
be described with linguistic terms. Each rule 
may consist of several linguistic terms that are 
connected with “and”, “or” and “not”. One or 
more linguistic output terms are derived from 
each rule to define the driving styles “careful”, 
“normal” and “sportive”. This is called inference 
process. Hence the rules are linked by logic as 
geometric functions. Many different rules need 
to be applied for a functioning system and it 
needs to be ensured that an output value can be 
generated for every possible combination. 

In a last step, the generated output values will 
be converted into a numerical value. This is 
called defuzzification. Defuzzification also uses 
distributions that can be the same membership 
functions as for the fuzzification. In the following 
section, we describe the design of our approach 
for a fuzzy logic for EVs. We have identified 
the relevant data for EV usage profiling in the 
chapter above. In a first validation of our usage 
profiling approach, the following parameters 
were chosen as input aggregation for calculating 
the driving style:

• Average of accelerator pedal intensity [%]
• Average of brake pedal intensity [%]
• Ratio of eco-mode button activation [%]

Usage Profiling in Electric Vehicles
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The input value range is adjusted according to 
the experimental average values so that during 
fuzzification, different linguistic terms are 

created for the different driving styles. This may 
also be seen in connection with the fuzzification 
of the average brake pedal intensity.

Figure 5: Fuzzification of the average brake pedal intensity

In Figure 5, the distribution of the fuzzification of 
the average brake pedal intensity and the identified 
driving style are shown. The x-axis represents the 
average brake pedal intensity as a percentage and 
the y-axis displays the degree of fulfilment with 
respect to the 3 different linguistic terms. The value 
range of brake pedal intensity is limited from 1 % 
to 5 % as the averages from the experiments are 
in this range. A trapezoid membership function 
was chosen for the terms “weak” and “strong” 
and a triangular membership function was chosen 
for the term “middle”, because these functions 
provided the best results for our limited test 
data. However, further experiments are planned 
in the future, so that the membership functions 
can be adjusted accordingly, for instance with 

machine learning techniques. For our experiment, 
however, the average brake pedal intensities for 
the different driving styles are depicted with red 
markings in Figure 5. It can be seen that the range 
of the different brake pedal averages is very close 
as the total range is only from 1 to 5. Furthermore, 
there is only a small difference between the careful 
and the normal brake pedal intensity. This is due 
to the fact that the braking behavior of EVs is 
very different from CEVs. Therefore, brake pedal 
intensity alone is not sufficient for classifying the 
driving style.

The accelerator pedal is a clearer indicator for 
the driving style, as is shown in the respective 
membership functions in the figure below. 

Figure 6: Fuzzification of the average accelerator pedal intensity

Figure 6 shows the distribution of the 
fuzzification of the average accelerator pedal 
intensity and the identified driving style. The 
x-axis depicts the average accelerator pedal 
intensity as a percentage and the y-axis displays 
the membership to the 3 different linguistic terms. 
For the linguistic terms “weak” and “strong”, a 
trapezoid membership function was used and 
for the linguistic term “middle”, a triangular 
membership function was used to best fit the 
driving styles. It can be seen that the average 

acceleration is a good indicator for the driving 
style and it can be very well distinguished. 
Moreover, with a range from 5 to  15, the value 
range is broader than the one for the brake pedal 
intensity. The driving styles lie further apart from 
each other and are thus better distinguishable.

The eco-mode button ratio was identified as 
a last input. Comparable to Figure 4, it was 
fuzzified with triangular membership functions 
for all three driving styles. 

Diana Schramm, Nicki Bodenschatz, Andreas Berl



JA
S.bayern

- 349 - 

A set of rules was created for calculating the output values from the fuzzified input values, as depicted 
in Table 2.

Rule block
Rule accelerationAverage brakeAverage ecoAverage drivingStyle weight
01. weak weak weak careful 1.0
02. weak weak middle careful 1.0
03. weak weak strong careful 1.0
04. weak middle weak careful 1.0
05. weak middle middle careful 0.8
06. weak middle strong careful 1.0
07. weak strong weak normal 0.4
08. weak strong middle careful 0.5
09. weak strong strong careful 0.6
10. middle weak weak normal 0.7
11. middle weak middle careful 0.2
12. middle weak strong careful 0.4
13. middle middle weak normal 1.0
14. middle middle middle normal 0.6
15. middle middle strong careful 0.2
16. middle strong weak normal 0.8
17. middle strong middle normal 0.6
18. middle strong strong careful 0.1
19. strong weak weak sportive 0.6
20. strong weak middle sportive 0.4
21. strong weak strong normal 0.3
22. strong middle weak sportive 1.0
23. strong middle middle sportive 1.0
24. strong middle strong sportive 0.8
25. strong strong weak sportive 1.0
26. strong strong middle sportive 1.0
27. strong strong strong sportive 1.0

Table 2: Fuzzy logic rule block

The table provides an overview on the different 
rules. In the left column, all 27 rules are 
listed. The columns “accelerationAverage”,” 
brakeAverage” and “ecoAverage” represent 
the three parameters. The three linguistic terms 
“weak”, “normal” and “strong” were assigned 
to each parameter. Each row is a permutation 
of the three linguistic terms pertaining to the 
parameters. The right column “drivingStyle” is 
the result of the rule. It had been assigned the 
three linguistic terms “careful”, “normal” and 
“sportive”. Hence this table can be transformed 
into the Fuzzy Control Language (FCL). The 
Fuzzy Control Language is a programming 
language especially designed for the evaluation 
of fuzzy statements. It is a domain-specific 
programming language. Therefore, it is only 

capable of interpreting statements to the fuzzy 
logic. One rule (Rule 22) transformed into FCL 
is shown below as an example:

“IF accelerationAverage IS strong AND brakeAverage IS 
middle AND ecoAverage IS weak THEN drivingStyle IS 
sportive WITH 1.0”

The rules cover all possible combinations to 
ensure a working system. The design of these 
rules depends on prior knowledge to judge a 
certain behavior. The keyword “WITH” at the 
end of every rule represents a factor for the 
strength of a rule. Rule 22 with a factor of 1.0 is 
therefore stronger than rule 21 with a factor of 
0.3. These factors are used to adjust the system 
and are chosen according to the experiments 
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so that the system calculates the driving styles 
correctly. Despite the limited amount of test 
data, however, the first draft of these rules seems 
promising. With more test data available, the 
results may be refined in the future. 

5. Results

After the calculation via the fuzzy system the 
output value is retrieved. This value represents 
the driver’s driving behavior during an individual 
trip. However, the developed system does not 

only classify a driver into one driving style 
category, but provides a percentage value 
incorporating two driving styles for the profile of 
an individual trip. This means that a driver can be 
75 % sportive and 25 % normal, which allows a 
better insight into the driving profile of a driver.

Thus, the system calculates a numerical number 
that correlates with the driving styles as output. 
This is done with a scale of between -10 and 10 
that is used for defuzzification by the system. 
The distributions of the defuzzification of the 
driving style are shown in Figure 7.

 Figure 7: Defuzzification of the driving style on the defined scale between -10 and +10

The x-axis shows the described scale of between 
-10 and 10 for the driving style outputs and 
the y-axis displays the degree of fulfilment of 
the linguistic terms. The linguistic terms are 
divided into “careful”, “normal” and “sportive” 
and refer to the driving styles. The value of -10 
characterizes a 100 % careful driver, the value 
of 0 characterizes a 100 % normal driver and 
the value of 10 characterizes a 100 % sportive 
driver. As the transitions between these values 
are fluid, a classification and a percentage mix 
of two driving styles is possible. Marked in red 
on the left-hand side is the value of -5 which 
would refer to a “careful” as well as a “normal” 
driving style at 50 % each. The value of 2.5, 
which refers to a 25 % sportive and a 75 % 
normal driving style, is also marked in red.

As this classification is based on the gathered 
test data, it may lack accuracy for different trips 
or drivers. However, this may be improved by 
larger-scale experiments. Nevertheless, our 
experiment demonstrates that it is possible to 
generate real-time and real-life usage profiling 
for EVs with the system we have established.

6. Conclusion

In this paper, the suitability of fuzzy logic 
for driving style classification with real-life 
driving data was demonstrated. Moreover, 
the differences between EVs and CEVs with 
respect to driving style classification were 
evaluated. Furthermore, a lack of driving style 
classification methods for EVs was shown as the 
majority of related work refers to CEVs.

To address this issue, a system was developed 
that is able to classify the driving behaviors of 
EV drivers using fuzzy logic. This system is 
based on real-life driving data from EV users 
and is specifically designed for EVs. Important 
EV-specific input parameters were evaluated 
and the differences as compared to CEVs were 
described. The basic driving behavior indicators 
accelerator pedal, brake pedal and eco-mode 
button usage were used as inputs for the 
classification. This shows that EV users’ driving 
styles are correctly classified by means of the 
developed system and by using basic driving 
data only. 
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Another important aspect of this work is the 
real-life experiment, which was conducted 
in an EV with an integrated data collection 
system. Thus, the developed system is based 
on real-life driving data. Further experiments 
using the developed system therefore can 
easily be conducted. By gathering more test 
data, the accuracy of the system is expected to 
be markedly improved. The fuzzy sets may be 
refined, e.g. by machine learning techniques. In 
addition, the accuracy of the FCL results can be 
improved.

Our classification system provides a percentage 
value for the degree of fulfilment of all 
driving styles. Thus, by classifying the driving 
style during an individual trip e.g. as 40 % 
careful, 60 % normal and 0 % sportive, a 
better assessment of driving behavior can be 
provided. In consequence, not only a dominant 
driving behavior would be evaluated, but also 
tendencies toward other driving behaviors. 
This allows for better adjustment of different 
assistance services, such as range prediction or 
adaptive cruise control.

In future work, additional parameters like speed 
in relation to the speed limit or street type will 
be evaluated. Further experiments that will be 
combined with a psychological questionnaire 
are planned in order to improve the developed 
system.
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