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In addition to commercial geodata, Volunteered Geographic Information (VGI) is 
gaining more and more importance in research. Platforms like Open Street Map 
(OSM) meanwhile provide an enormous amount of geodata. At the same time, 
however, new questions arise regarding the quality and the possibilities of using OSM 
data for research matters. Therefore, in the field of spatial planning, data require 
further validation processes and data cleaning frameworks. This paper presents a 
method of data processing in the context of electric mobility (e-mobility) research 
with a focus on a charging station placement model. The presented methodology is 
divided into pre-validation, to gather the relevant data set, and data processing, that 
specifies the relevant Points of Interest (POI) for further research by deleting all 
possible complications arising in OSM data. The validation process is customized 
to the model that determines the demand of electric charging by categorizing POIs 
into the four time slots living, work, shopping and recreation. By processing data in 
the presented way, the electric vehicle charging model is filled with improved input 
data, which allows to reduce the bias associated to the particularities of the OSM 
production process. A case study in the Bavarian-Czech border area demonstrates 
that the error correction rate through the model is at about 10%.

Neben kommerziell bereitgestellten Geodaten nehmen freiwillig erhobene geographische 
Daten (VGI, volunteered geographic information) in der Forschung einen wachsenden 
Stellenwert ein. Plattformen wie OpenStreetMap (OSM) bieten inzwischen eine enorme 
Menge an Geodaten, deren Qualität und deren Mehrwert für die Forschung zunehmend 
kritisch betrachtet werden. Besonders dann, wenn es um räumliche Planung geht, 
müssen die Daten vor der Anwendung angemessen validiert und bereinigt werden. In 
diesem Artikel wird ein Datenverarbeitungsmodell vorgestellt, mit dem OSM-Daten so 
aufbereitet werden können, dass der Bedarf an Ladeinfrastruktur für Elektroautos über 
von Nutzern eingetragene Point of Interests (POI) räumlich möglichst genau erfasst und 
abgebildet werden kann. Zunächst erfolgt eine Selektion relevanter Datensets durch eine 
Prävalidierung. Im zweiten Schritt werden die wichtigsten POI selektiert und spezifiziert. 
In einem dritten Schritt werden alle OSM-immanenten Schwierigkeiten beseitigt. 
Das hier vorgestellte Datenverarbeitungsmodell ist auf das Thema Elektromobilität 
zugeschnitten, für welches POIs in die vier Zeitkategorien Arbeit, Leben, Einkaufen 
und Freizeit eingeteilt werden, um so den Bedarf an Ladeinfrastruktur zu erheben. 
Durch dieses Modell der Datenverarbeitung soll die Energienachfrage für Elektroautos 
räumlich möglichst realistisch dargestellt werden und Rohdaten mit ihren bekannten 
Fehlern durch den OSM-Datensammlungsprozess bereinigt aufbereitet werden. Anhand 
einer Fallstudie, die im bayerisch-tschechischen Grenzraum durchgeführt wurde, wird 
gezeigt, dass die Fehlerrate durch die Implementierung validierter Daten um ca 10% 
reduziert werden kann. 
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1. Introduction

Recent technological progress, especially in 
battery research, increases the electric vehicles’ 
(EVs) competitiveness compared to conventional 
vehicles. Many governments are promoting EVs 
in order to reduce the carbon footprint of their 
respective country, which is pushed, among 
others, by the European Commission. Different 
subsidies and incentives have been established 
at several levels to raise the awareness for EVs 
and to increase their popularity in the public. In 
Germany, for instance, the government is paying 
a sustainability bonus (“Umweltbonus”) to 
private users purchasing an EV and is granting 
tax deductions on company cars, among other 
measures [1]. In addition to the financial 
incentives, municipalities and regional actors also 
try to increase the attractiveness of e-mobility 
through economic and regional development 
concepts such as purchase subsidies, free parking 
or reserved parking spots and free bus lane use for 
EVs [2]. Currently, the focus of these concepts is 
put more on purposefully integrating e-mobility 
infrastructure into existing structures and less on 
substituting the latter by entirely new forms of 
mobility.

Given the objective of integrating EVs into the 
existing transportation and energy distribution 
network, creating the required infrastructures for 
recharging EV batteries poses new challenges 
to regional governments, municipalities and 
individuals, as well as to distribution grid operators. 
These challenges result from the high importance 
of implementing a charging infrastructure fitting 
to the regional needs of customers. This is due 
to the significant differences from conventional 
refueling as charging EV batteries takes 
considerably longer. Compared to fossil fuels, 
the high time expenditure on EV charging means 
that charging processes have to be embedded 
into the daily schedule and route planning of 
users, but also into the already existing regional 
energy supply structures. This is why it is highly 
important to find answers to the question of where 
charging stations (CS) have to be set up.

With the ability of spatiotemporal modeling, 
Geographic Information Systems (GIS) can be 
utilized to support answering this question. In 
addition to the GIS functionalities, the spatio-
temporal approach requires a comprehensive 
database for finding suitable sites for CS. 
Nevertheless, due to the complexity of the 
collection methods and the high amount of 
information needed, there is still no database 
available that has been designed to assist 
the planning of charging infrastructure. The 
methodology presented in this paper draws the 
attention on how to use and ensure the quality 
of collaborative mapping platforms data for 
spatiotemporal modeling in the context of 
e-mobility. A big advantage of OSM compared 
to commercial geodata and other collaborative 
mapping platforms is that OSM is the most 
complete free open source database available 
for everyone. Moreover, OSM is constantly 
being updated, constantly growing and open to 
be edited by all potential actors involved. 

Using OSM data offers a broad database with 
great potential, however, also involves some 
inconveniences. Even though collaborative 
mapping platform data is versatile enough to 
be used in a variety of applications, it has not 
primarily been designed to be used for scientific 
purposes. OSM, and other crowdsourced 
geographic data sources in general, are known 
to be partly incomplete or incorrect [3–8]. This 
study focuses on the extraction of relevant 
Points of Interest (POIs) from OSM to support 
e-mobility infrastructure models as in Zink et al. 
[9]. Unlike earlier quality assessments based on 
the quantitative and statistical characteristics of 
OSM data, this study contributes to the literature 
about OSM data, presenting an innovative 
method for extracting valuable information 
based on qualitative criteria and a data processing 
methodology. The results show the potential of 
qualitative studies and their complementarity 
with conventional statistical approaches to VGI 
quality assessments. The second contribution 
of this study is related to the literature on CS 
placement. Unlike most of the previous studies 
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on CS locations, the reference regions are rural 
areas with a focus on the road from Písek (Czech 
Republic) to Deggendorf (Germany), whose 
future suitability for EVs is currently being 
evaluated. As previous studies show that OSM 
biases are greater in areas with lower population 
density, focusing on this area allows to assess 
the robustness of the methodology under 
diverse conditions – it contains both rural and 
small urban areas ‒ and to open up an avenue for 
research on CS locations models based on VGI.

The rest of the article is structured as follows: 
the next section presents an overview of rural 
e-mobility models and the possibilities for 
using OSM. Section 3 presents a methodology 
for selecting and processing OSM data for 
e-mobility projects, and section 4 shows results 
of applying the methodology in rural areas 
stretching over two countries, currently facing 
demographic exodus. In section 5 the findings 
are concluded.

2. Spatial localization for charging 
stations and OSM-based studies

Overall, models for the optimal EV charging 
infrastructure can be studied in many different 
directions, starting from the inside (battery 
lifetime analyses, driving distance enhancements 
or consumption needs of single tools) and 
leading to outside factors (CS infrastructure, 
willingness to buy EV or awareness of natural 
impact improvements). Although EVs have 
already become a reality in many countries and 
cities, the research effort devoted to generating 
optimal models for CS infrastructure planning is 
still in its infancy. Developing new approaches 
is of primary importance, as several studies 
indicate that range anxiety is a central inhibitor 
to going electric [10–12]. A sufficiently 
developed CS infrastructure could contribute 
to diminishing this inhibitor [13] and foster the 
trust in EV technology. 

The lack of studies on the optimal placement 
of CS in rural areas is in strong contrast to the 
increasing attention on optimal allocation and 
modelling in urban areas. In a recent review of 
the literature, Shareef et al. [14] found that more 
than 100 articles with a focus on the optimal 
placement and sizing are published every year in 
specialized research journals, all aiming at urban 
areas. These studies are in many cases based on 
geographical information of different complexity. 

For instance, Huang et al. [15] proposed a model 
for the placement of CS in urban areas based 
merely on geographical correctness. This means 
that CS are not located depending on the actual 
demand but on the geographic distances from 
each other to tackle possible driving/battery 
range anxieties. Frade et al. [16] define the 
demand for CS on the basis of the 2001 census 
data and apply their demand model to an area 
in Lisbon, Portugal. In comparison, Chen et al. 
[17] base their CS location model on the travel 
distance while bearing in mind the re-charging 
requirements of consumers with respect to the 
existing transportation network and its efficiency. 
Funke et al. [18] compare demand-driven 
localization models with a coverage-driven one. 
They state in their results that planners should 
first find out on what matter to put their focus: on 
the demand-driven amount of needed CS or the 
distribution of CS pursuing the coverage aspect. 
All mentioned studies propose CS locations 
depending on different factors, however, always 
in urban, very densely populated areas.

The vast availability of studies shows the wide 
range of options and possibilities for locating 
CS depending on the characteristics of drivers, 
EVs, locations, needs and charging technologies. 
However, to the authors’ knowledge, only a 
few number of studies have been carried out in 
rural areas to describe important characteristics 
and they are based on GPS recorded data. For 
instance, Triebke et al. [19] collected data on 
more than 15.000 charging events in both rural 
and urban areas and their statistical analysis 
shows that although the charging behavior in 
urban areas is predictable, it is rather random in 
rural environments and occupancy rates are low 
compared to urban areas. In a more recent study, 
Gasde et al. [20] also found that although EVs 
offer socially and environmentally promising 
perspectives in rural areas, the economic 
drawbacks of current e-mobility solutions are 
a barrier for EV expansion. These case studies 
reveal the difficulties in implementing EV 
solutions in rural areas. The challenge is even 
greater when the model’s scope is extended 
to covering multiple municipalities given the 
complexity of GPS-based collection methods and 
the recourse-intensive data collection method. 

Data collection, or more specifically, the 
collection, assembling and dissemination of 
geographic data, is the focus of collective mapping 
and VGI databases. The increasing availability of 
data sets of freely available VGI has led to strong 
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interest from researchers and practitioners in the 
usability of these data, both their limitations and 
their potential. Although VGI offers an alternative 
mechanism for the acquisition and compilation 
of geographic information, it requires many 
individuals to participate. Some authors argue that 
researchers should analyze but not complement 
VGI [21]. The collection of data should be done 
by the overall public which leaves researchers 
more space and time to focus on quality checks. 
Those quality checks have been realized by many 
studies in a variety of ways. The unconventional 
way in which data are being produced as well as 
their richness and heterogeneity have resulted 
in a range of different research questions on 
how to assess, mine, enrich, or just use these 
data in different domains and for a wide range 
of applications. In the area of e-mobility, to the 
authors’ best knowledge, only the study of Zink 
et al. [9] is based on OSM data. Similarly to 
Frade et al. [16], they locate CS infrastructure at 
places where the potential demand for electricity 
for transport reasons is the highest, but instead of 
using census data they used OSM data to allocate 
the demand. Using OSM allowed Zink et al. 
[9] to generate a CS location model for a large 
low-density area like the studies of Triebke et 
al. [19] and Fournier et al. [20]. Finally, Wanger 
et al. [22] also developed a model for demand 
location for car sharing, in this case based on 
Google API; they included 180,000 POIs as well 
as demographic data in order to identify POI 
categories that substantially influence variation 
in car sharing activity.

OSM and crowdsourced geographic data 
sources in general are known to be partly 
incomplete or incorrect, and many studies were 
performed to analyze data characteristics of 
different VGI platforms [3–8]. In the following, 
we focus on OSM which today is the platform 
with the highest number of registered users and 
the largest crowdsource-based data volume 
[3]. The methodology discussed in this paper 
attempts to make it possible to use these data 
for research, that is to say, they need to be 
cleaned and verified. Senaratne et al. [3] provide 
a summary of articles in the area of VGI Data 
Quality Analysis. Quality measures for VGI as 
defined by the International Organization for 
Standardizations (ISO) are completeness, logical 
consistency, positional accuracy, temporal 
accuracy and thematic accuracy. Besides these 
qualitative criteria, quantitative criteria are 
introduced, namely purpose, usage and lineage. 
For all these different criteria, Senaratne et 

al. [3] have executed analyses in order to define 
the level of correctness of different data sources. 
However, these authors did not introduce data 
cleaning processes on a larger scale.

Regarding specific OSM data studies, several 
research projects focus on different OSM data 
sets and analyze different layers. For Germany, 
Fan et al. [23] compare road data in OSM with 
official data while Zielstra and Zipf [5] compare 
road data with commercial data acquired by 
navigation service providers. The results of 
both studies indicate medium to high levels of 
completeness and quality of the examined data, 
depending on the population density. Moreover, 
they show how fast the OSM data set is increasing 
over time. Between July and December 2009, 
the road data provided on OSM in the specified 
research regions increased by 20%. Neis et al. [6] 
show that OSM data in several cases even exceed 
the data pool used by car navigation systems in 
2011. Arsanjani et al. [7] compared OSM data 
with pan-European GMESUA data and Dorn et 
al. [8] compared OSM data with official German 
administrative data updated every 3 months, 
both putting a focus on land use and land cover 
(LU/LC) data. Asanjani et al. [7] conclude 
that LU/LC OSM data lie within a correctness 
and completeness level of 40%-60%. Dorn et 
al. [8] reveal that concerning LU/LC data, the 
quality and completeness of OSM data strongly 
depends on the feature classes observed. 
Forests, for example, show a large completeness 
and correctness level in the study area in 
southern Germany. Other classes of data such as 
farmland or urban areas/characteristics are often 
incomplete although the information provided 
is of high quality. In other cases, the quality of 
data is low while the level of completeness is 
high [8]. Barron et al. [24] focus their research 
on quality assessments of OSM by reviewing 
the history of OSM data. They state that it is 
possible to evaluate the quality of the observed 
data solely by assessing the history of the data 
generated and without using external sources. 

These examples demonstrate that many research 
efforts have been realized in different use cases 
to define the degree of quality of OSM data. 
A variably applicable cleaning and verification 
process for a better usage of OSM data, 
however, has not yet been introduced. The next 
section introduces a validation methodology 
in order to fill this gap and to increase the 
application of these freely available data for 
specific research topics. 
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3. Methodology for data validation 

The data validation methodology presented 
herein was developed for an e-mobility 
demand model based on OSM data which 
was developed by Zink et al. [9], however, it 
may also be tailored to other mobility-related 
models as the one by Wagner et al. [22]. To 
facilitate the logic behind the data validation 
process presented in the following section, 
figure 1 displays the modeling approach by 
Zink et al. [9]. As described in the previous 
section, the aim of this site planning model 
for e-mobility is to place CS infrastructure 
at locations where the potential demand for 
electricity for transport reasons is the highest. 
It is therefore based on existing transportation 
patterns and current transport infrastructure and 
not on the current system based on gas stations. 
Due to the long periods needed for charging 
EV, the main idea behind the model is to create 

charging infrastructure at existing parking 
locations instead of using the current model 
of isolated gas stations. The charging demand 
calculation is based on a spatial statistical 
methodology considering demographic 
parameters and maximum walking distances 
from the CS to selected POIs according to 
four age groups. It furthermore contains the 
average time use per activity per day, dwelling 
time at one POI, the penetration rate of EVs 
and POIs from OSM. The walking distance 
determines the optimal location within a region 
with high energy demand by minimizing the 
average walking distance to the surrounding 
POIs. Therefore, the optimal location is found 
while simultaneously considering high parking 
demand and short walking distances. If there 
is only one POI within the user’s maximum 
walking distance, the charging location is as 
close to the POI as possible, but always bound 
to the street. 

Figure 1. Electricity demand and site planning modeling approach

POIs from OSM are included in the model to 
define the areas where demand is highest. As 
already described, in OSM, gathering data 
depends on the users, this means that anyone 
who finds a certain spot on the map that is not 
yet classified, such as a fuel station, can add it 
accordingly and tag it with the category of their 
choice. Consequently, a personal bias might be 
in place for each single location defined in OSM. 
Thus, a qualitative review and data validation 
process is necessary to assess the quality and 
relevance of the input data. 

Furthermore, POIs like, for instance, 
kindergartens or schools can have a point-like 
or a polygon shape in OSM. As an example, 
figure 2 shows a screenshot from the OSM web 

map with a query about schools. On the left 
hand side, a point is selected that represents 
Staatliche Berufsschule Deggendorf (public 
vocational training school). The screenshot on 
the right hand side visualizes the selection of 
the entire building (polygon), including four 
other schools (so 4 points in one polygon). For 
modeling, this raises the question as to which 
dataset the location search should be based on: 
on one school or on four schools. In the electric 
demand modeling approach, the number of POIs 
is the determinant of EV’s charging demand, 
which induces the need for inserting the number 
of POIs into the model that is closest to reality. 
The methodology presented herein reviews 
necessary processes for validating OSM data 
before including it into an e-mobility model.
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Figure 2. Screenshot of OSM web map 

3.1 OSM data characteristics 
In OSM data, different POI categories like 
buildings, roads, water, etc. are classified and 
they are further divided into sub-categories, 
which are also called feature classes (f-classes) 
by Geofabrik, the provider of OSM data used 
in this study. F-classes are, for instance, tree, 
school or bank1. The decision to add a new 
location to a specific category in the OSM data 
depends on the judgement of the volunteers. 
As it is possible for everyone to participate 
in adding data to OSM, the map is highly 
user-reliant, depending heavily on individual 
preferences as well as on the socio-economic 
and geographic characteristics of each region. 
In order to reduce this source of bias, the OSM 
community maintains a large OSM wiki page 
and implemented a series of quality checks 
as well as reviews of the dataset. However, 
users mainly add new features to the map for 
regions they know well. As a consequence, 
every tree and every bench in a park have been 
added for some regions, while the mapping 
for other regions is rather poor. Regions and 
POIs attracting more people are mapped with 
more detail and are more complete while, for 
instance, important POIs in rural regions are 
missing. This pattern is also observable with 
regard to the distribution of mapped parking 
spaces. A decrease in the percentage of mapped 
parking areas is observable the further away the 
parking space is from regions that are highly 
interesting. The propensity for higher data 
correctness and completeness depending on 

population density is also very well represented 
in the analysis of Dorn et al. [8]. Due to these 
patterns, it is necessary to clean and validate 
the data before using OSM data and in order to 
assess the level of correctness. The validation 
process presented herein is specifically designed 
for the requirements of the OSM data and can 
be applied to OSM data from other regions 
with minor adaptations. It consists of two main 
steps, namely (1) pre-validation, which includes 
selecting relevant data for the project, and (2) 
data processing, which considers the cleaning of 
data and the preparation of one complete data set. 

3.2 Pre-validation
In the first step of the validation process, the 
main goal is to extract only data that are relevant 
for the e-mobility model described in figure 1. 
The first questions that needs to be answered is 
whether (1) the feature class (f-class) is relevant 
for the model’s goal. The second question is 
whether (2) the f-class is distinguishable enough 
for use within the model. The criteria for the 
f-classes to be chosen are dependent on the 
model specification and the research objective. 
In this model, as explained above, different time 
categories were defined. The POIs need to be 
classified into one of these classes according to 
their main purpose. It is therefore necessary to 
ask (3) whether the f-class is defined narrowly 
enough so that it can be categorized into one 
of the four time classes. Figure 3 lists these 
questions including criteria that need to be met 
in order to fit into the model. 

1  See: https://www.geofabrik.de/data/geofabrik-osm-gis-standard-0.7.pdf
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Figure 3. Pre-validation process

Besides these three initial questions for data 
selection, additional qualitative criteria have to 
be met in order to further process the relevant 
data. These criteria do not apply directly to the 
entire f-class but to the single features within 
f-classes. The first criterion is related to the 
location’s geographical characteristics. In the 
model it is assumed that at least 70% of the 
POIs per f-class needed to be close to streets 
or parking spaces. A range of 1km is defined 
as the maximum distance. The maximum 
distance refers to 1km on paths or tracks, 
not necessarily passable by car, however, 
accessible by foot, bicycle or other means of 
transport. Additionally, the f-class considered 
in the model needs to be exactly categorized 
in its additional information. For example, 
the POI category “building” can be any type 
of building, ranging from family houses over 
public administrative buildings to convenience 
stores. Thus, if additional information about 
the type of the building is missing on the 
platform, it is neither possible to define the 
kind of demand for CS infrastructure for this 
f-class, nor can the POI be defined according to 
the model’s needs. The correct pre-validation 
yields a list of f-classes which should be 
relevant for the model and can be further 
evaluated in the second validation step.

The following quantitative and qualitative 
criteria are developed in order to define the 
OSM data that are relevant for the EV CS 
demand-model: 

i. Distance to roads or parking spaces

Walking distances is a central concept in a 
model for transportation and public health and 
it is the major factor in the context of parking 
choice [25]. Overall, research on the exact 
distance and duration of walking trips for 
different purposes and across diverse population 
groups remains limited. For Germany, it is 
difficult to obtain estimates of the distribution of 
walking distances from parking places to final 
destinations. As to research in other countries, 
it is difficult to assess the validity of the results 
based on survey data. These limitations arise 
because of the discrepancy between perceived 
distances and objective distances [26, 27]. 
Based on these studies and for the purpose of the 
model applied, the maximum walking distance 
to the next parking place or street is set to 1km. 

ii. Relevance

Different time categories for weighting the 
relevance of POIs are applied in the e-mobility 
model. These time categories are based on 
surveys that collected information on the time 
spent on daily activities in Germany and the 
Czech Republic [9]. The f-classes are considered 
relevant for the model if they can be classified 
into one of the activities depicted in the time 
surveys. For instance, the f-classes “school” or 
“courthouse” can be classified within activities 
concerning the time category “work”, other 
f-classes such as “tree” or “bench” cannot 
easily be allocated to one certain activity as 
they describe street furniture and vegetation. In 
order to assess the significance of this criterion, 
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a literature review was conducted to see whether 
the charging events recorded on pilot projects 
and used to model EV driving behaviors are 
consistent with the time usage model applied in 
this project. The results of the literature review 
show that current charging behavior in urban 
areas is strongly determined by the activities 
of EV drivers [19]. Studies point out that the 
distribution of charging events in function of 
the location of the CSs (for instance: working 
places, homes and recreation locations) are 
consistent with the users’ use of time [12, 27].

iii. Differentiability

Differentiability is a key element to the purpose 
of e-mobility models and is related to the way 
in which data are recorded and classified. It 
accounts for the capacity of distinguishing within 
and between the classes. The f-class “swimming 
pools” provides an idea of the capacity to 
differentiate within classes. It characterizes 
whether the data recorded respond to a common 
structure and whether their characteristics are 
identifiable. In the case of the swimming pools, 
the data is considered to be non-differentiable as 
it does not allow to draw a line between public 
or private swimming pools. Another issue can 
be displayed by the f-class “commercial”. This 
class does not allow to be differentiated from 
other f-classes such as shops, restaurants or 
clothes. Therefore, such f-classes are also not 
considered to be differentiable among f-classes.

iv. Classifiability

As OSM data are integrated into the model with 
data of different origins, the classifiability of each 
class is paramount. In the OSM e-mobility model, 
instead of basing demand for each CS on the 
current behavior of EV users, the model uses the 
amount of time that both members of the German 
and the Czech population spend on different 
activities. The classifiability criterion represents 
the possibility to allocate the f-classes to those 
activities. Therefore, an enterprise or a city hall 
are classified as places of work, a restaurant is 
classified as a recreation location and any kind of 
shop is allocated to shopping activities.

3.3 Data processing 
The data processing phase consists of several 
steps, all building on one another in order to 
identify whether the locations represented in 
the OSM data correspond to real sites and to 
make sure that duplicates are erased. Figure 

4 displays the different steps of this process 
and the resulting actions. In order to do so, it 
is first necessary to check the geographical 
intersections between points and polygons to see 
whether there are points that are as well included 
in the form of a polygon, both referring to the 
same POI. This first step in the analysis is done 
across all f-classes, simultaneously checking 
for duplicates within and between the f-classes. 
There are some classes that are likely to be used 
as substitutes, like “observation tower” and 
“viewpoint”. The extracted list of duplicates is 
further separated into three categories, namely 
“exact matches”, “approximate matches” and 
“possible coexistence”. In the first two groups, 
the corresponding polygons are erased in order 
to reduce the amount of duplicates. In the group 
containing the inconsistencies, both the points 
and the polygons indicate two different sites and 
thus must remain in the data set. The “possible 
coexistences” are left aside in this step, as it is 
liable to believe both OSM tags are relevant.

After erasing all irrelevant polygons or points 
identified in this step, polygons get transformed 
into points and one large data set is created 
for further analysis. A common issue with 
OSM data is that different users may consider 
the same location for different f-classes. This 
results in one data point, with one OSM data 
ID, represented in different f-classes. Therefore, 
when considering more than one f-class, two 
or more data points with the same OSM ID at 
the same location but in different f-classes are 
possible to arise. Thus, the intermediate step is 
to erase points that have the same OSM ID and 
indicate the same spot. As already explained, 
some f-classes have a broader definition than 
others, a point “commercial” can cover various 
topics that are specified in other f-classes like 
“clothes”, “hairdresser”, “supermarket” or 
“restaurant”, just to name few. Thus, a list of 
priorities is introduced that deletes the second 
or third data point with the same OSM ID, 
always leaving the most specific point in the 
data set. For example, a religious location with 
the f-classes church, Catholic, cemetery, work-
art, Christian and garden is reduced to church.

For further data processing, data points are 
compared considering the belonging to an 
f-class. Further duplicates may exist even after 
comparing points directly situated in polygons 
and deleting double OSM IDs. This can happen 
if the same location appears as a point and as 
a polygon without any overlap, for instance, it 
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may be the case of a polygon representing an 
edifice that is surrounded by a garden and also 
of a point, representing the street number of the 
edifice and being located on the sidewalk. These 
duplicates can best be found by geographically 
estimating rational distances between points 
of interest. A wastewater plant, for example, 
is usually not located directly next to another 
one, clothing stores, however, are mostly 
grouped together in a particular part of the city 
center. Thus, a special distance is allocated to 
each feature class in which one point would 
normally not occur twice. For that, f-classes 
representing features that could be used 
equivalently are grouped. A common example 
would be the f-classes graveyard and cemetery. 
Simultaneously, to make sure former polygons 
are represented according to their size, this 
analysis was made by introducing three different 
polygon sizes. Either 0, 50% or 100% of the 
former shape is represented in the form of a 
buffer around the points. A comparison between 

the three different results are made in order to 
estimate the best fitting solution for each f-class. 
Double entries are thus deleted accordingly 
while points of different origin are not erased by 
mistake.

In the last step of data processing, buffers of 
different sizes are laid around each remaining 
point in the data set to analyze in purely 
geographical manner whether points are close to 
each other. This final step is done without limiting 
the comparison to inter-f-class consolidations. 
Results indicate the most mapped areas within 
the data sets. This step is undertaken to find 
and manually delete remaining duplicates. 
Besides being the final step of data processing, it 
simultaneously represents a quality assessment 
of the previous steps. If many duplicates occur 
that still need to be erased manually, it is possible 
to identify which parameters of the former steps 
need to be adjusted in a way that allows for a 
more qualitative result. 

Figure 4. Data processing

4. Case study eRoad:  
Deggendorf – Písek 

The presented methodology is applied to an area 
at the German-Czech border (see Figure 5). The 
regions involved around Deggendorf and Písek 
are facing particularly large challenges: on the 
one hand, population numbers are decreasing 
due to the absence of basic amenities or the 
general lack of employment opportunities in 
rural areas. On the other hand, there is a flow of 
migration of new citizens coming from towns 

in a process of deconcentrating population also 
called “counterurbanization” [29]. Under such 
a scenario, municipalities are lacking fitting 
infrastructure and their competence in areas 
related to mobility is often not sufficient in order 
to react to the ongoing e-mobility transition with 
a mature concept. As preferences and needs of 
habitants from these regions do not correspond 
to those of urban citizens, there is a need to adapt 
existing e-mobility solutions to the characteristics 
of this area. A concept covering all relevant topics 
can only be realized when municipalities ensure 
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basic infrastructure for their population that 
satisfies current and future demands. The concept 
moreover needs to provide attractive incentives 
and possibilities for the economic development of 
the area and, at the same time, offer an attractive 

quality of living. Therefore, the selection of POIs 
to be implemented in the CS demand model 
should be based on such characteristics and 
present an appropriate response to the potential 
citizens’ needs.

 Figure 5. eRoad project region and POIs from OSM data 

The full OSM dataset was downloaded from 
Geofabrik GmbH (https://www.geofabrik.de/) 
covering Lower Bavaria, and the Czech Republic 
in June 2018 and in August 2018, respectively. 
Following the first quality criterion, POIs were 
selected based on their proximity to roads and 
parking spaces. For the regions of the study, OSM 
data are mainly composed by polygon layers and 
f-classes associated with buildings and land use, 
which account for almost 80% of the whole data 
set followed by data on transport infrastructure, 
mainly roads and railways (12%) and points 
signaling very different classes of locations, from 
natural parks to cafés and bus stations (8%). 

In the pre-validation phase, the georeferenced 
f-classes were evaluated in relation to the 
explained criteria: relevance, differentiability 
and classifiability. Using a scale from 1 to 3, 
each f-class received a rating on how well 
they covered the queried need for the model. 
For instance, a bus station is relevant for the 
e-mobility model as some users may drive 
to the station by car and then continue their 
journey by bus, and therefore may score a 3 in 
relevance. It is, however, not differentiable, as 
the f-class contains small bus stops that cannot 
be considered to have a car transport demand 
but also central bus stations which may raise 
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a large demand. It thus would also be difficult 
to classify and therefore would score a 2 in the 
classifiability and a 1 in the differentiability 
criterion. On the other hand, a waterfall may 
also be relevant as it could generate interest 
to visit it, but not as relevant as a supermarket 
that would score a 3. Moreover, a waterfall is 
highly differentiable and may score a 3 there, 
unlike a building with no information on its 
use, which scores a 1 or 2. Finally, all f-classes 
containing a 1 were discarded as they were not 
at all considered to be relevant, differentiable 
or classifiable. In this process, the number of 
f-classes was reduced from 313 to 130 in the 
case of Germany, and from 270 to 113 in the 
case of the Czech Republic. 

Based on the model classifications of Zink 
et al. [9], the f-classes were organized into 
the four different time categories “work”, 
“home”, “recreation” and “shopping” in order 
to introduce them to the model (figure 6). The 
f-class categorization was done equally for 
both countries. The results of the remaining 
points per f-class are demonstrated in figure 7. 
It shows that the category “recreation” is the 
largest one in Germany, including 4,407 points, 
directly followed by the category “shopping” 
with 2,126 points. In the Czech Republic, the 
category “shopping” is the largest with 3,126 
points, followed by “recreation” with 2,982 
points. The different order of time categories 
between the countries may indicate that users 
mapping the Czech Republic have concentrated 
their efforts on different f-classes compared to 
users mapping Germany, or that the structures 
of the two countries are differently specified, 
even though the regions observed are directly 
neighboring each other.

In figure 7, an overview of the points eliminated 
by demand category in each methodology step is 
presented. After allocating every f-class to a time 
category, the data processing started with the 
point in polygon comparison. 677 of the 10,620 
locations in the German case, respectively 
101 of the 9,613 locations in the Czech region 
observed show a problematic entanglement. 
Several points were found in one single polygon. 
For example, 18 attraction points were located 
in one polygon belonging to the f-class zoo. 
One OSM user named each attraction according 
to the animal that could be seen from that 
exact spot in the zoo. Simultaneously, several 
large and broader classified f-classes like, for 
instance, industrial contained more specified 

points like car wash, hairdresser or butcher. As 
a result, the f-classes industrial and commercial 
of the German data set were removed as more 
than 50% of the points and polygons in these 
f-classes were erroneous. The other point-in-
polygon incidents were deleted depending on 
the more precise explanation of the f-class.

After cleaning the data set according to 
the findings, all remaining polygons were 
transformed into points and merged with the 
shapefile including all locations that were 
marked as points from the beginning. Step 2 in 
the analysis deleted 958 German and 520 Czech 
points of the datasets, as they were duplicates 
by OSM ID. In both regions, these points were 
mainly recreation places related to religious 
activities. Due to the proximity of churches, 
cemeteries, chapels and locations with the 
reference Christian, which obviously in many 
cases made reference to the same location, many 
of these points had to be deleted in order to avoid 
a non-existing demand for CS infrastructure. 
Moreover, in the Czech regions, a high number 
of camping sites were referenced in the OSM 
data as different locations, even if they made 
reference to buildings and land areas belonging 
to the same camping area. On the other hand, 
in the German regions many duplicates were 
locations belonging to the categories chalet, 
gift shop and car wash. These differences give 
a further idea of the dependence of OSM data 
to regional and cultural characteristics and 
preferences. 
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Figure 6: Number of POIs by f-class after Pre-validation (top 25 f-classes)

The last step of the methodology presented herein 
is responsible for most of the discarded data. This 
step is to a strong degree regionally dependent as 
it has to do with the way OSM users insert their 
data. A large number of locations were eliminated 
in the Czech Republic (1,907), of which the most 
were industrial locations (1,212 out of 1,625), 
schools (51 out of 93) and pitches (130 out of 329). 
In Germany, 1,275 locations were eliminated 

including a large number of chapels (52 out of 
146), huts (64 out of 134) and also pitches (367 out 
of 782). This last step reduced the dataset to the 
final 8,010 locations in the German regions and 
7,085 individual locations in the Czech Republic. 
5,438 points were eliminated during the process 
(Figure 7). In both countries, around 73% of the 
pre-validated data are left after data are left to be 
implemented into the model after data processing.
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Figure 7: Number of POIs by demand category by data pre-validation and data processing step

5. Discussion and outlook

This study focused on the potential of OSM data 
for locating demand for modeling EV energy 
demand, presenting a novel approach for OSM 
data quality validation. Instead of conventional 
statistical approaches, the performed analysis is 
based on qualitative criteria which are related 
both to the content and the structure of the data. 
The results of the analysis performed show that 
OSM data cannot be included in e-mobility 
models as they are because of the way in which 
they are generated. In particular, the OSM data 
analyzed in this project show that the features 
in many cases lack adequate descriptions that 
allow to identify basic characteristics of the 
locations as, for instance, their names. This 
particularly applies to the f-classes “industrial”, 

“commercial” and “buildings”, which in 
many cases do not contain any description of 
the industrial and commercial activities they 
made reference to. In the case of buildings, the 
purpose of those buildings and their typology is 
mostly missing.

The results show that the high degree of 
subjectivity of the users and the administration 
of the platform are other issues related to data 
quality. There is a lack of quality assessments 
by the platform administrators of common 
errors like duplications of POIs. These errors 
can occur in different situations, like when 
mapping an already existing site or adding 
an already existing POI by allocating it to a 
different POI f-class with a slightly different 
definition. A common mistake, for example, is 
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to allocate one church to the f-class Catholic, 
Catholic church or church. What’s more, the 
mapping of data is very user and POI-specific. 
Some users might map “swimming pools” not 
only as publicly available swimming pools, 
but define every private pool as a swimming 
pool. It would therefore be interesting if the 
tag for public and private locations was better 
controlled. Moreover, another common mistake 
related to classification stems from confusing 
different classes, for example not all participants 
may know the differences between the f-classes 
graveyard and cemetery.

Adding these feature class errors to a model 
may not have an impact at the aggregated level, 
but it can heavily distort the outcomes for some 
specific location to an even greater extent than 
if the erroneous feature class were left out 
completely. Taking once more the example of 
the swimming pools, defining one POI as several 
ones can be another area for errors, because the 
institution “swimming pool” consists of more 
than one pool. Thus, a swimming pool with 3 
different pools would be marked in the map as 
3 different POIs, which falsifies the data set and 
triples the calculated energy demand when using 
three POIs instead of the single one existing. An 
avenue of future research will be the evaluation 
of these biases through case studies in different 
regions.

As the f-classes function as tags for POIs, 
different POI categories sometimes contain very 
similar f-classes. This may lead to further POI 
duplicates as some users may map the viewpoint 
as a “watchtower”, some as an “observation 
point” and then again, others may just use the 
category “viewpoint”. In this example, one 
POI would turn out to be three on the map with 
different names but referring to the same spot. 
Moreover, all f-classes consist of point and 
polygon data sets. As a result, many, however 
not all of the points are additionally represented 
as polygons, inducing more duplications.

In order to cope with these problems, one of the 
potential possibilities is to complement OSM 
data with data from other sources. For example, 
in the case of Germany and the Czech Republic, 
the data can be enriched by firm-level data 
obtained through the Czech Statistical Office 
(CZSO) and the German Chambers of Industry 
and Commerce (IHK) company registers in 
order to locate industries. Both institutions 
collect data on firm locations and the numbers 

of workers which allow to differentiate and 
calibrate the model in function of the affluence 
to work places based on the numbers of workers. 
Nevertheless, in order to include such data sets, 
it would be necessary to ensure that there are 
no duplicates between the different data sources 
as the official registers may contain enterprises 
that are already included in the OSM dataset. 
Moreover, such data sets are often very costly 
and the large advantage of OSM data, besides its 
richness, is that it is free of charge.

The methodology presented in this paper shows 
the relevance of conducting studies to increase 
the use of OSM data for geographic modeling. 
Nevertheless, the current classification 
methodology based on tags should be improved 
in order to make OSM more user-friendly. 
To this end, one option would be to re-define 
the tag classification methodology in order to 
simplify the complexity of the data. This option, 
although possible, would probably impact 
one of the main advantages of OSM data: its 
richness. Another option would be to generate 
a parallel or multiscale tag classification that 
allows to identify which data is susceptible to 
be used in different contexts.

The analyzed OSM data in the scope of a 
model for CS placement show that most of the 
selected POIs are not suitable for the model. 
Nevertheless, it is necessary to note that OSM 
is not complete and therefore there may be 
locations that have not been included in the 
model. This bias is normal, taking into account 
the relative novelty of the OSM project and the 
constant nature of OSM data. For this reason, 
the major part of the methodology presented 
herein is based on automatic processes and 
algorithms specifically designed to reduce 
human supervision of the results. Moreover, the 
data processing also includes a validation step 
in order to acknowledge for any bias associated 
to the f-class classification during the validation 
process itself.

Finally, it should however be noted that many 
research projects could not have been carried out 
in the way they are currently done if OSM data 
were not available. The availability of such a rich 
and diverse data set can despite large error fields 
provide insights that would normally have not 
been possible without considering costly datasets. 
Therefore, there is a need to continue the research 
in OSM data quality control in order to increase 
the range of applications of such a rich source 
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of information. For that, it may be necessary 
to create specific classification methods. These 
classifications would allow to identify which 
data are susceptible to be used within different 
contexts. This would make it possible for a region.
or city interested in, for instance, applications 
of OSM data for tourism to just download a set 
of data already validated. Further work should 
focus on approaches to quality assurance of such 
data for accuracy assessment and to extend the 
analyses to other regions. This may impact the 
quality and accuracy of the overall model and 
reduce biases, especially in rural areas with lower 
overall numbers of POIs.
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