
- 162 -

DEC 2016 - NO. 2 BAVARIAN
JOURNAL
OF APPLIED SCIENCES®

Using Code Metrics for Android Programming

Peter Faber
Technische Hochschule Deggendorf

Tanja Maier
Technische Hochschule Deggendorf

Stefan Schuster
Technische Hochschule Deggendorf

Today, maintainability is of great importance for software projects. In this regard,
software metrics play a crucial role in software development: these metrics may
be used to objectively assess certain aspects of the software project at hand. We
give an overview of available software metrics and evaluate their availability
in software development tools. To that end, we explore their usage for the
improvement of an Android app project – the E-WALD InCarApp. We provide
evidence about their usefulness in a case study by measuring and comparing
different aspects of the software project, leading to a derived software metric.
We focus especially on measuring and improving code quality and compare these
results to statements obtained from developer interviews which indicate that our
derived metric may well be used to identify hot-spots for optimization.

Wartbarkeit ist heutzutage von größter Wichtigkeit für Software-Projekte. Hierzu
spielen Software-Metriken eine zentrale Rolle in der Software-Entwicklung: Diese
Metriken können genutzt werden, um gewisse Aspekte des betrachteten Software-
Projekts objektiv einzuordnen. Wir geben eine Übersicht über zur Verfügung stehende
Software-Metriken und evaluieren ihre Verfügbarkeit in Software-Entwicklungs-Tools.
Dazu betrachten wir ihre Anwendung bei der Verbesserung eines Android-App-Projekts
– der E-WALD InCarApp. Wir weisen ihre Nutzbarkeit in einer Fallstudie nach, in der
wir unterschiedliche Aspekte des Software-Projekts messen und vergleichen, was uns
zu einer abgeleiteten Software-Metrik führt. Wir konzentrieren uns hier vor allem auf
die Messung und Verbesserung der Code-Qualität insbesondere der Wartbarkeit und
vergleichen die Resultate mit Aussagen aus Interviews mit den Software-Entwicklern.
Die einfache abgeleitete Metrik erscheint dabei durchaus schon geeignet, um Hot-
Spots für Optimierungspotenziale zu identifizieren.

ABSTRACT

JA
S.bayern

- 163 -

Java, Android, app programming, software engineering, software metrics

Java, Android, App-Programmierung, Software-Engineering, Software-Metriken

1. Introduction
Software development is a fast-paced process
building systems in a world with constantly
changing requirements. As a consequence,
software source code evolves over time
becoming more and more complex and thus
harder to understand and maintain. To quantify
this notion of complexity, many software
metrics have been introduced and are available
in different tools. These metrics can be used at
different stages in the software development
process, and each metric tends to show specific
advantages and shortcomings. One could
demand, for instance, that source files have to
be short in order to be quickly understood and
thus maintained. Such a demand could then be
supported by counting the lines of code of all
source files – this is the value the so-called Lines
of Code metric (LOC) provides. However,
even a short source file can be hard to modify
if hundreds of classes depend upon this very
file and one therefore also needs instruments
measuring the degree of dependency.
Therefore, this work compares a range of
popular code metrics and evaluates their fitness
for refactoring purposes – in this case of the
E-WALD Android InCarApp, an advanced
driver assistance system for electric vehicles
(EV). The selection of tools used for calculating
metrics was therefore governed by their ability
to process Android Java code. This article
provides

• an introduction to the theory behind some of
the more popular code metrics and gives an
overview of the available tools to compute
these metrics in Section 2.

• a case study describing the use of several
metrics in the development process of
the E-WALD InCarApp in Section 3. In
particular, we provide measurements of
different versions of the app and compare
them.

• an evaluation of our case study and a

discussion of how well the code metrics
mirror the actual refactoring decisions in
Section 4

• a conclusion and ideas for future work in
Section 5.

2. Measuring Code Quality
Loosely following Ebert [1], most code metrics
can be subsumed in one of the following
categories:
* Volume-based metrics
* Encapsulation-based metrics
* Structure-based metrics
Let us first review the properties of these metrics
following the above classification.

2.1 Volume-based Metrics
Volume-based metrics simply mirror the amount
of code used for a given task -- just as the LOC
metric mentioned in Section 1.

Number of Public Methods (NPM). Counts the
number of public (and thus externally callable)
methods of a class [2]. We use the tool ckjm [3]
(see below) for measuring NPM.

Non-commented Source Statements (NCSS).
Even though LOC is easy to compute, the
lines that actually make up all the complexity
of the code are only the executable source
statements; thus, comments an empty lines
should be ignored when comparing source
codes [4]. NCSS only counts these executable
source statements. This makes the metric
harder to compute, since tools actually have to
parse the code under consideration. Moreover,
there is no common definition of „executable
statement“. As an example, the Teamscale tool
by Heinemann et al. [5] considers Java import
statements as source code, while Tim Littlefair‘s
CCCC [6] does not. This emphasizes that there
is usually not a single absolute number that
can be assigned to some piece of code even for
simple metrics. We used the Teamscale tool to
measure the NCSS metric.

Using Code Metrics for Android Programming

KEYWORDS

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 164 -

Weighted Methods per Class (WMC). This
metric, introduced by Chidamber and Kemerer
[7], assigns a weight to each method of a
class and sums up those weights. This gives a
rough estimate of the complexity of the class.
By adjusting, the weights, can be adapted to
specifi c situations. The most common weights
are:

1. simply assign 1 to each function (counting
the number of functions)

2. compute McCabe‘s cyclomatic complexity
for each function (see below).

WMC -- along with a whole set of additional
metrics -- can be computed using the open
source command line tool ckjm [3] (which
uses weight 1) or SourceMeter [8] (which uses
McCabe‘s cyclomatic complexity). We use
ckjm for our measurements, since we view
McCabe‘s complexity separately.

McCabe‘s Cyclomatic Complexity
(McCabe). The intuition behind McCabe‘s
cyclomatic complexity is to measure the
number of decisions in a function. To be more
precise, it represents the number of independent
paths (without any assumptions on decision
results) through the control fl ow graph (CFG)
of a function. The cyclomatic complexity C(G)
is defi ned through the CFG G=(V,E) of the
function [9, 10]. For a given piece of code, let
V be the set of its code blocks (basic blocks).
We connect two code blocks by an edge, if one
code block can be directly executed after the
other. Let E then be the set of those edges. Then,
the cyclomatic complexity C(G) is defi ned by:

C(G) = |E| - |V| + 2

As an example, Figure 1 shows a CFG for the
code if (B){ X; }. In this case, |V| = 4, |E| =
4, resulting in an overall complexity of C(G)=
4 - 4 +2 = 2, which is in fact the number of
possible paths of execution. Thus, McCabe
can be used to estimate the number of test
cases needed for complete branch coverage.
It also provides a hint towards maintainability
(due to software complexity), since a code
containing many complex decisions is harder
to understand and thus harder to maintain
than a simple one-dimensional sequence of
instructions.

Figure 1: Example control fl ow graph for if (B){ X; }.

Tools that measure McCabe‘s cyclomatic
complexity include CCCC and SourceMeter
[8, 11]. Again, there are differences in the
defi nitions applied by the tools. The most
important difference here is whether short-
circuiting in the programming language (i.e.,
evaluating a Boolean expression only as long
the outcome of the expression is not yet clear,
e.g. in true or [...]) is assumed to create paths
in the CFG or not. For our experiments, we use
SourceMeter, which models short-circuits as
branches in the CFG.

(Maximum) Nesting Depth (MND), also
called Nested Block Depth (NBD). The
maximum nesting depth is defi ned as the
maximum number of control statements nested
into each other [12]. We measure nesting depth
using the Teamscale tool.

2.2 Encapsulation-based Metrics
Object-oriented languages like Java pose a
challenge for volume-based metrics:

* The methods in classes of object-oriented
languages tend to be quite short and to hide
decision complexity -- as the one measured by
McCabe -- by calling other methods.

* Moreover, object-oriented programming
itself introduces a completely different kind
of complexity in programs that volume-based
metrics do not handle at all: relations between
classes and packages.

To tackle these problems, several new metrics
have been introduced in the literature.

Coupling Between Object classes (CBO).
This metric counts the number of classes that

Peter Faber, Tanja Maier, Stefan Schuster

(1)

JA
S.bayern

- 165 -

a certain class A communicates with (i.e. the
number of classes B from which A calls methods
or references variables) [7]. If A communicates
with B on several occasions, this relation is still
only counted once. Chidamber and Kemerer [7]
cite 3 reasons for introducing this metric:
* A high coupling degree reduces modularity,
and reuse is hindered.
* A small coupling degree promotes
encapsulation and thus improves maintainability.
* Higher inter-object class coupling entails the
need for more rigorous tests (and thus more
complex tests).
Some authors exclude those classes B that are
already in an inheritance relation with A [1].
To compute this metric, we use ckjm, which
employs the original defi nition by Chidamber
and Kemerer [7].

Afferent Couplings (CA) / Efferent Couplings
(CE). Besides the mere number of coupled
classes as measured by the CBO metric, one
may also be interested in the strength of this
coupling. Afferent (incoming) Couplings CA(A)
of a class A is defi ned as the number of members
of A that are accessed by some other class B.
Correspondingly, Efferent Couplings represent
the sum of all members defi ned in some class B
that class A uses.
As an example, consider Listing 1.

class B{

 public void doSomething(){...}

 public void doSomethingElse(){...}

}

class A{

 B b;

 public A() {

 B b = new B();

 b.doSomething();

 // re-inserting the following statement

 // increases RFC(A) from 4 to 5:

 // b.doSomethingElse();

 }

 private void doSomething() {

 b.doSomething();

 }

}

Listing 1. Example Java program: class B depends on class
A via calls to doSomething() and doSomethingElse().

In the example of Listing 1, class A calls methods
of class B in several places. CBO(A)=1, since
only class B is referenced. Moreover, since A
only calls B.doSomething() (and no additional
function) CE(A)=CA(B)=1. This holds,
although B.doSomething() is called twice.
However, if the call to B.doSomethingElse()
in A.doSomething() is re-inserted, A now calls
two different functions from B, increasing
CE(A)=CA(B) to 2.

Depending on application and author, the
defi nition of CA/CE can differ, e.g. to mean the
number of classes outside the current package
that refer to a class inside the current package
[12].
We calculate only CA and use ckjm to that end.

Response For a Class (RFC). Just as CBO,
RFC was originally introduced by Chidamber
and Kemerer [7]. Essentially, RFC(A) is the
same as CE(A) plus the number of methods
defi ned in A itself. Formally, RFC for a class A
is defi ned as the number of different methods
(defi ned in some other classes) that are called
by methods of A plus the number of methods
defi ned in A.
Reconsider the code snippet from Listing 1.
In this case, RFC(A)=2+1+1=4: A contains
2 methods (the constructor B.B(), and
B.doSomethingElse()), it calls 1 method from
class A (A.doSomething()), and, since in Java,
all objects inherit from class Object, it also calls
the constructor of Object as its parent class.
Note again that, although RFC(A) does not
increase any further due to the repeated call
to B.doSomethingElse(), it does increase to
5, if the call to B.doSomethingElse() that is
commented out is re-inserted into the code,
since a different method of B is now called in
addition to B.doSomethingElse().
Thus, the response for A is the number of
methods that can theoretically be called when a
message is sent to an object objA of type A by
some other object objB (i.e. when a method of
objA is called).
Again, Chidamber and Kemerer [7] cite 3
reasons for introducing this metric:
* Testing and debugging may become
increasingly complex when a large number of
methods has to be executed (and thus analyzed
during debugging) as a response to a received
message.
* Thus, RFC may be used to assess testing time.
* A large number of member methods may hint
at an altogether complex class.
We measured this metric using ckjm.

2.3 Structure-based Metrics
In addition to volume-based and encapsulation-
based metrics, there are further metrics that can
be helpful in the analysis of source code. We
subsume these metrics under the general term of
structure-based metrics.

One important point – the only one we consider
in this work – is the existence of clones. Clones

Using Code Metrics for Android Programming

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 166 -

Peter Faber, Tanja Maier, Stefan Schuster

are exact copies of code that occur at different
sites from the original code. For example, the
call b.doSomething() in Listing 1 occurs twice
in class A -- once in the constructor and once
in method A.doSomething(). Both of these
occurrences are clones of each other. However,
as one can plainly see, these small clones of
length 1 (line) can even be desirable. However,
larger sections of code that occur several times
in some program code may hint at unstructured
source code, because clones usually could very
well be re-combined into a single function that
can be called from several places. Therefore, it
is important to choose a threshold that defines
a lower bound for the size of a clone in order
to be considered a clone. Clone detection refers
to the pure indication of recurrences which can
be quite helpful during coding itself. Based on
the number and sizes of clones, a number can be
computed to give the clone sites a meaning as a
metric. This leads us to clone coverage.

Clone Coverage (CC). The canonical metric for
clone recognition as described above is Clone
Coverage, which is defined as the percentage of
source code detected to be a clone. This can be
interpreted as the probability with which some
randomly picked source code is actually (part
of) a clone [13]. Parameters influencing clone
coverage include not only the minimal length
of a clone (in LOC), but also whether variable
names should be unified (or interpreted as-is)
and whether generated code is to be excluded.
We used the Teamscale tool to compute CC. In
our analysis, clones have a minimal length of ten
lines, third-party libraries were excluded (which
also holds for the other metrics applied here),
and variable names are subjected to a unification
algorithm, i.e. clones can be recognized even
after (a simple) renaming.

3. Tools
This section gives a brief overview of some
tools that can be used to compute the previously
defined metrics. We will describe each tool
briefly and give a short assessment of the
usability of the tool.

ckjm. Short for Chidamber and Kemerer Java
Metrics, ckjm is a tool developed by Spinellis
[3] to compute the metrics by Chidamber and
Kemerer for Java programs [7]. In their paper,
Chidamber and Kemerer propose seven metrics
for software analysis: WMC (weighted methods

per class), CBO (coupling between object
classes), RFC (response for a class) plus three
more metrics that we did not discuss above –
DIT (depth of inheritance tree), NOC (number
of children), and LCOM (lack of cohesion in
methods). These metrics are computed directly
as defined in the original paper by Chidamber
and Kemerer [7]. In addition, Spinellis [2]
included CA (afferent couplings) and NPM
(number of public methods) in his tool. The tool
is a stand-alone console program. The computed
results are presented directly on the standard
output.
ckjm computes metric values for each class
separately. Anonymous classes are handled as
autonomous entities. For the analysis of Java
programs, ckjm relies on byte code (.class)
files in JVM format. This imposes a technical
problem for Android projects, where the target
is Dalvik format (Dex byte code). However,
Java classes are usually first compiled into JVM
format before the conversion into Dex byte
code. So it is possible to use the intermediate
JVM byte code files (whose location depends on
the IDE used) for analysis through ckjm. Also,
input files have to be provided correctly on the
command line. This may include additional
work with UNIX tools such as find or xargs.
However, several files may be combined into a
single report. Still, there is no plug-in available
to directly view the results during coding in an
IDE.
ckjm is an open source Java program and claims
to run on any Java-enabled platform.

Teamscale. The software and consulting
company Continuous Quality in Software
Engineering (CQSE) develops a GUI-based
tool called Teamscale which is also available
in an open source version called ConQAT [5,
17]. Teamscale is designed to support analysis,
monitoring, optimization, and code quality
engineering during software development.
Teamscale shows its results in real-time.

JA
S.bayern

- 167 -

Figure 2. Dashboard of the Teamscale GUI.

The main features of the Teamscale analysis tool
include analysis for architecture conformance,
clone detection, test gap analysis, coding
conventions, and documentation analysis.
Teamscale consists of an analyzing backend that
can be run on a development computer or on a
server, and a frontend that is used to represent
Teamscale‘s fi ndings graphically; the frontend
can be run as a stand-alone GUI-based program
or from within an IDE as plug-in (currently
available for Eclipse, Visual Studio and IDEA).
The most important metrics are directly visible
on a confi gurable dashboard (cf. Figure 2).
This approach is very well suited for immediate
feedback to the developer and interactive code
reviews: The values observed can be represented
on a time line, and the representation as a
tree map directly shows very clearly where
thresholds for certain metrics are exceeded in
a package by applying a color code to areas of
a map.
However, the tool appears suboptimal for the
generation of offl ine reports, since the GUI
partly relies on interactivity (such as the mouse
hovering over interesting parts of a diagram) in
order to reveal exact numbers from the analysis.
Teamscale and ConQAT are Java programs; the
server component of Teamscale is available for
Linux and Windows.

CCCC. CCCC is another text console-based
stand-alone program. The current Ubuntu-

based Linux distributions even contains a
CCCC package. For each source fi le, it creates
an XML and an HTML fi le that represent the
results. The fi les are located in a hidden directory
called .cccc. CCCC computes the metrics
of Chidamber and Kemerer. Additionally, it
computes some volume-based metrics such as
LOC and McCabe. Originally, CCCC (short for
C/C++ code counter) was developed for C/C++
code. CCCC claims to be also able to parse
Java code, so that it can be used in the context
of Android app programming.
Indeed, CCCC was able to produce output for
the complete E-WALD InCarApp. However,
not all Java code was treated correctly by this
tool: Java annotations (such as @override)
seem to confuse CCCC so much that it skips
the corresponding function entirely and assigns
0-values. Since CCCC produces two output
fi les for each input fi le, additional work has to
be done to extract information for a common
report; however, to that end, the XML fi les
produced can be converted using UNIX tools.
Thus, CCCC can be used quite well to generate
offl ine reports using scripts; however, it does
not deliver immediate feedback via IDE plug-
ins.
CCCC is an open source program available for
Linux, FreeBSD, and Windows.

SourceMeter. Another console-based tool
is SourceMeter [8, 11], which is a program
developed at FronteEndART, a company

Using Code Metrics for Android Programming

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 168 -

Peter Faber, Tanja Maier, Stefan Schuster

specializing in software quality management.
It can be used for Java, C/C++, C#, Python,
and RPG. SourceMeter is able to compute a
plethora of metrics (approx. 70), e.g. McCabe,
WMC, CBO, RFC, depth of inheritance tree
(DIT), LOC, number of attributes (NA),
and number of classes (NCL). The metric
definitions here differ slightly from those
employed by ckjm; e.g., as already mentioned,
McCabe is used as weight for each function
in WMC. SourceMeter is well-adjustable in
parameters for the computed metrics (such as
minimal clone length) and supports more input
languages than usual.
SourceMeter is supported on Windows and
Linux.

Sonargraph. Sonargraph is both, a plug-in
for Eclipse/Spring or IDEA, and a GUI-based
tool for analyzing Java, C#, and C++ code. It
is available in two flavors -- the free Explorer
version and the commercial Architect version,
which includes more features. Sonargraph
specializes on a specific set of metrics that we
did not consider in this first study [14]. These
metrics are based on class dependencies as
observed by Robert C. Martin [15]; the basic
idea here is that cycles in the dependency graph
of classes should be avoided. However, in our
preliminary tests, these kinds of dependencies
occurred mainly due to the Android operating
system.
Sonargraph is available for Windows, Linux,
and MacOS.

Checkstyle. As an aside, this tool should
be mentioned as a valuable helper for Java
development; it is not directly used to measure
metrics, but it can be used to guard coding
standards that have been set in a project.
Checkstyle, as its project homepage says, is a
development tool to help programmers write
Java code that adheres to a coding standard
[16]. This tool can be executed as an Ant
task, but also as a plug-in for Eclipse, IDEA
or NetBeans. If used as a plug-in, it directly
marks the occurrences of code segments that
do not adhere to the defined standards. These
coding standards can be adjusted by defining
patterns and thresholds for these patterns.
Checkstyle supplies immediate feedback to the
programmer and may therefore be quite helpful
in producing standard conforming code from
the start.
Checkstyle is an open source stand-alone tool
that can also be called via plug-ins for several
IDEs including Eclipse and claims to run on
Java platforms. Current Ubuntu-based Linux
distributions include Checkstyle.

Summary. Table 1 shows a comparison
matrix for the different tools. The first three
columns show whether the corresponding
tool can be used as plug-in in an IDE, in a
text-console, or with a GUI. The following 6
columns show the most important supported
programming languages for each tool, and the
last set of columns indicates which of the more
common metrics can be measured using the
corresponding tool.

 UI
Supported

programming languages Metric

Name Pl
ug

-In

Co
ns

ol
e

GU
I

Ja
va

C/
C+

+

C#

Py
th

on

Ja
va

Sc
rip

t

AB
AP

LO
C

NC
SS

W
M

C

NP
M

M
cC

ab
e

CB
O

RF
C

CA

CR

CC

ckjm - Chidamber and Kemerer Java Metrics 
Teamscale/ConQAT 
Checkstyle 
Sonargraph Architect 
CCCC 

SourceMeter 

Table 1. Overview of software metrics tools and their features.

JA
S.bayern

- 169 -

4. Evaluation
In order to evaluate the use of software metrics
in the development process and assess the
usefulness of the tools above, the authors
followed the development process of the
E-WALD InCarApp.
The E-WALD InCarApp represents a vital point
in the E-WALD project whose aim is to support
electric car concepts available today in rural
areas. The InCarApp itself is an Android app
installed on tablets inside the E-WALD electric
vehicles. It is used for (1) collecting data about
the current state of the car of a trip, and (2) for
updating the driver about charging stations, the
expected remaining range of the car on a map,
and other information.
(1) Regarding the first of those aspects, the
app‘s purpose can be divided into two phases
that build a kind of data pipeline:

1. Collect data from
* the car‘s CAN bus (CAN: Controller Area
Network; a car-internal communication
network),

* GPS coordinates,
* tablet data (temperature, battery state of health
etc.),
* possibly further data.
2. Provide the collected data via a central hub,
e.g. for computing the remaining range of the
EV.
3. Process collected data in different ways, e.g.:
* send data packets to a server for further storage
and data processing
* internally process data for visual user feedback
in the car
Separating these tasks from each other in the
logic is of importance for the reusability of the
corresponding code fragments. Thus, in order
to reuse the InCarApp code in other projects,
this structure should be mirrored in the class
structure.
The InCarApp is in the process of transitioning
from version 11 to version 12. Version 11 of the
InCarApp does not clearly separate the three
aspects identified, as can be gleaned from Figure
3, which shows part of the original InCarApp in
a class diagram.

Figure 3. E-WALD InCarApp class structure, version 11.

Using Code Metrics for Android Programming

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 170 -

Peter Faber, Tanja Maier, Stefan Schuster

A crucial point here that lends itself to
optimization can be seen in the class
CanValueTransferManager. This is actually
the main data hub of the original app and
is responsible for sending data to a server.
However, this class was originally designed
to send CAN values only (as can already be
guessed from its name) and is therefore not
well extensible to include other data as well.
In fact, in order to send additional data such as
GPS coordinates, it is necessary to modify the
code of CanValueTransferManager (it has to
pull the new value from the class GPSService).
Instead, one would rather like to simply submit
new data via some connection broker.
In addition, there are direct dependencies to
classes which are responsible for rather unrelated
aspects of the overall app. For instance, in case
of a lost connection to the CAN bus, the class
ObdConnector directly tries to restart the app
by sending a message to ShutdownManager.
In another case, CanValueTransferManager
also decides that a new computation should
be triggered in class RangePolygonUpdater,
although this decision has nothing to do with
the communication itself.
Also, the frequency in which data is sent
to the server has to be made explicit in the
corresponding classes. This can also be seen in
the relationship between classes.
Large parts of the original InCarApp have
been refactored in an attempt to achieve those
goals. The current version 12 encapsulates
each of these aspects into stand-alone libraries
which are completely independent from each
other. The app was divided into two major
parts during refactoring: on one hand, a helper
project — the CAN-lib — was created that
contains all necessary functionality to talk to
the CAN bus, on the other hand, the remaining
InCarApp contains the central data hub, but
also functionality for server communication
and end user presentation. For the purpose of

this study, these parts where always viewed
together as a single application.
Both the earlier version 11 and the refactored
version 12 of the E-WALD InCarApp where
subjected to a series of analyses using different
metrics. In the following, we report about the
result of this examination.
In this work, we report on the results of
following metrics:
* Weighted Methods per Class (weight 1)
* Number of Public Methods
* Non-Commented Source Statements
* McCabe‘s Cyclomatic Complexity
* Maximum Nesting Depth
* Coupling Between Object classes
* Afferent Coupling
* Clone Coverage (minimum clone length: 10
lines)

For each metric M, we calculate the maximum
value observed across the different classes C:

()CMmax=Max classesCM ∈

For each class C and each metric M, we then
build the ratio

()
MMax

CM

The rank of a class C, R(C), then is given by the
sum across all metrics considered:

R(C) =
M(C)
MaxM

∑M metricsϵ

Thus, the highest rank specifies the class with
the highest metric values overall. In our case,
for each metric, a higher value means a less
favorable outcome (our aim are few, concise,
uncoupled methods and classes).

(2)

(3)

(4)

JA
S.bayern

- 171 -

 Volume Encapsulation Structure

R(C) WMC NPM NCSS McCabe MND CBO CA CC (%)

ChargingMapActivity 122 (100%) 65 (100%) 1165 (100%) 91 (100%) 5 (71%) 199 (100%) 50 (37%) 0,0 (0%) 6,08
FileServerThread 29 (24%) 15 (23%) 547 (47%) 57 (63%) 4 (57%) 32 (16%) 6 (4%) 0,0 (0%) 2,34
SettingsActivity 48 (39%) 33 (51%) 431 (37%) 29 (32%) 2 (29%) 66 (33%) 13 (10%) 0,0 (0%) 2,30
DebugErrorTab 21 (17%) 8 (12%) 290 (25%) 35 (38%) 7 (100%) 35 (18%) 7 (5%) 0,0 (0%) 2,16
Logger 16 (13%) 11 (17%) 163 (14%) 17 (19%) 2 (29%) 9 (5%) 136 (100%) 0,0 (0%) 1,96
CanValueTransferManager 22 (18%) 13 (20%) 418 (36%) 43 (47%) 4 (57%) 16 (8%) 6 (4%) 0,0 (0%) 1,91
StartupLogoActivity 33 (27%) 19 (29%) 195 (17%) 12 (13%) 5 (71%) 43 (22%) 14 (10%) 0,0 (0%) 1,90
HomeButtonActivity 28 (23%) 12 (18%) 251 (22%) 15 (16%) 6 (86%) 36 (18%) 8 (6%) 0,0 (0%) 1,89
PoiUpdater 15 (12%) 8 (12%) 330 (28%) 54 (59%) 4 (57%) 21 (11%) 7 (5%) 0,0 (0%) 1,85
PoiGroupGridViewAdapter 22 (18%) 15 (23%) 288 (25%) 35 (38%) 4 (57%) 23 (12%) 4 (3%) 0,0 (0%) 1,76

Table 1. Top ten worst rated classes of InCarApp version 11 Table 2. Top ten worst rated classes of InCarApp version 11.

Table 2 shows the top ten classes in descending
order according to their rank R(C) as they appear
in version 11 of the E-WALD app. The whole
app contains 151 classes. Metric values here
are supplied as absolute numbers, but also as
percentage with respect to the corresponding
maximum values in the project. Table 1 shows
ChargingMapActivity as the number one target
for refactoring. CanValueTransferManager,
a class that had already been speculated as a
good candidate for refactoring, ranks at number
six among the top ten highest ranking classes.
Further classes in this top ten list include
FileServerThread, PoiUpdater, which had also
already been on the developers’ list. In contrast
to those classes, HomeButtonActivity, number

eight on the top ten list, had not been an a-priori
candidate for the developers. However, a closer
examination reveals that the class contains
several unnecessarily deeply nested try blocks.
These make the implementation harder to
understand and were flagged due to the high
value of MND. On the other hand, there are
classes like Logger that rank quite high in the
list, although they cannot be identified as a valid
target for refactoring. In the example of the
Logger class, this is primarily due to the fact that
the class has to be called from almost all other
classes, and is therefore coupled quite closely to
those other classes (yielding a CA rating of 136,
which is the maximum CA value of all classes).

 Volume Encapsulation Structure
WMC NPM SLOC McCabe MND CBO CA CC (%) R(C)

MapActivity 50 (100%) 17 (52%) 417 (100%) 43 (96%) 3 (75%) 101 (100%) 15 (63%) 0,0 (0%) 5,85
ReserveChargingStation 50 (100%) 10 (30%) 238 (57%) 18 (40%) 4 (100%) 66 (65%) 12 (50%) 0,0 (0%) 4,43
DataSenderService 35 (70%) 18 (55%) 310 (74%) 30 (46%) 3 (75%) 45 (45%) 12 (50%) 20,2 (20%) 4,35
EwaldMap 26 (52%) 17 (52%) 221 (53%) 39 (87%) 4 (100%) 41 (41%) 7 (29%) 0,0 (0%) 4,13
DataSenderService 23 (46%) 13 (39%) 197 (47%) 22 (49%) 3 (75%) 28 (28%) 8 (33%) 0,0 (0%) 3,18
FakeCanConnectionV1 30 (60%) 11 (33%) 229 (55%) 21 (47%) 2 (50%) 9 (9%) 7 (29%) 0,0 (0%) 2,83
CarLocationOverlay 19 (38%) 10 (30%) 174 (42%) 23 (51%) 3 (75%) 27 (27%) 2 (8%) 0,0 (0%) 2,71
CanService 22 (44%) 12 (36%) 122 (29%) 7 (16%) 2 (50%) 39 (39%) 13 (54%) 38,9 (39%) 2,68
OnNavigationIconHeaderClickListener 23 (46%) 6 (18%) 106 (25%) 9 (20%) 4 (100%) 27 (27%) 7 (29%) 0,0 (0%) 2,66
EwaldChargingApiReader 11 (22%) 2 (6%) 174 (42%) 45 (100%) 3 (75%) 7 (7%) 1 (4%) 0,0 (0%) 2,56

Table 3. Top ten worst rated classes of InCarApp version 12.

Table 3 shows the same top ten ranking for the 205
classes of version 12 of the E-WALD InCarApp.
MapActivity (which had been refactored
into MapActivity and the also high-ranking
EwaldMap) still leads the ranking of classes to
be refactored. Nevertheless, although this class
remains a candidate for further improvement,
the absolute values were remarkably reduced
for all metrics considered, indicating that
the refactoring effort indeed showed some
effect. Again, the classes that leave room for

improvement in the view of the developers
also rank high according to our top ten list. An
example is DataSenderService, ranking on place
five. This class is still thought to have too high a
degree of different responsibilities, which could
be improved upon in further releases.

In order to evaluate the changes between version
11 and 12 of the E-WALD InCarApp, we also
considered the average rating of all classes
according to the different metrics considered.

Using Code Metrics for Android Programming

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 172 -

For each metric M, we calculated the average
value A(M) of the metric across all classes of an
app version:

A(M) =
M(C)

number of classes
∑C classesϵ

Figure 4 shows the ratio of these averages
between version 11 and 12 of the InCarApp.

As can be gleaned from Figure 4, almost all
relevant metric values have been reduced on
average in version 12 of the app, with the lowest
reduction in the number of methods (WMC):
the new version still uses 79% of the number of
methods per class in comparison to the previous
version. The highest reduction can be seen in
Afferent Couplings (CA), which now average at
only 50% of the previous values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ø WMC Ø NPM Ø SLOC Ø McCabe Ø MND Ø CBO Ø RFC Ø CA

Figure 4. Relative changes between version 11 and version 12 of the InCarApp; the metric values for version 11 correspond to
100%.

Still, there is one exception that is not explicitly
shown in Figure 4: The clone coverage actually
increased from 1.7% to 8.7% in the new
version. This is probably due to the fact that the
InCarApp is still in the process of refactoring, in
which certain classes have been copied in order
to guarantee functional equivalence during
recoding.

5. Conclusion and Future Work

Overall, our findings can be summarized as
follows:
* Software metrics can indeed hint quite well at
hot spots in a software project, even in the case
of a larger, grown Android app project.
* Nevertheless, the decision about which hot
spots are really in need of a redesign should
never be made blindly following the numbers
any code metric (or combination thereof)
produces (e.g. a logger class will usually be
coupled with many other classes).
* Using a ranking method like mentioned above

may not yield an authoritative answer as to which
packages and classes should be refactored, but it
does give a good priority list on which classes to
have a look at first.
* For agile development methods in particular –
that generally work with frequent code changes
– plug-ins can greatly improve development.
However, encapsulation-based metrics – which
could help in the coding process – are almost
never found in tools that can be used as plug-ins.
The metrics considered here are strictly syntax-
based. An interesting point lies in how far
semantic aspects could be integrated into code
metrics, e.g. simply by identifying semantically
related expressions or defining structural
patterns. As a first step, however, more metrics
from different fields should be included in our
consideration, and the crucial point of creating
a ranking function – which may be quite
project-specific – requires thorough quantitative
analysis.

Peter Faber, Tanja Maier, Stefan Schuster

(5)

JA
S.bayern

- 173 -

Using Code Metrics for Android Programming

6. Disclaimer
The authors are not aware of any conflicts of
interest.

7. Acknowledgements
The authors wish to thank the software
developers of the E-WALD project team, in
particular Mr. Michael Schönberger, who
supported this work in numerous interviews and
discussions.
The E-WALD project is funded by the Bavarian
State Ministry for Economic Affairs and Media,
Energy and Technology.

8. References
[1] Ebert, Christof; Dumke, Reiner (1996): Software-

Metriken in der Praxis. Einführung und Anwendung
von Software-Metriken in der industriellen Praxis.
Berlin et al.: Springer.

[2] Spinellis, Diomidis (2005): “Metric Descriptions.”
[Online]. Available: http://www.spinellis.gr/sw/ckjm/
doc/metric.html. (Accessed: June 20, 2016).

[3] Spinellis, Diomidis (2005): “Tool Writing: A Forgotten
Art?” In: IEEE Software: IEEE Computer Society
Press, Los Alamitos, CA, USA 22 (4), pp. 9–11.

[4] Schneider, Kurt (2012): Abenteuer Softwarequalität.
Grundlagen und Verfahren für Qualitätssicherung und
Qualitätsmanagement. Heidelberg: Dpunkt.verlag.

[5] Heinemann, Lars; Hummel, Benjamin; Steidl, Daniela
(2014): “Teamscale: Software Quality Control In
Real-Time.” In: Companion Proceedings of the 36th
International Conference on Software Engineering
(ICSE ‚14). New York: ACM, pp. 592–595.

[6] Littlefair, Tim (2001): An Investigation into the Use
of Software Code Metrics in the Industrial Software
Development Environment. Ph.D. Thesis. Edith
Cowen University, Perth, Western Australia. Faculty of
Communications, Health and Science.

[7] Chidamber, Shyam R.; Kemerer, Chris F. (1994): „A
Metrics Suite for Object Oriented Design.” In: IEEE
Transactions on Software Engineering 20 (6), pp. 476–
493.

[8] Ferenc, Rudolf; Langó, László; Siket, István;
Gyimóthy, Tibor; Bakota, Tibor (2014): “Source Meter
Sonar Qube Plug-in.” In: Proceedings of the 14th IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM) 2014, pp. 77–82.

[9] McCabe, Thomas J. (1976): “A Complexity Measure.
In: Proceedings of the 2nd International Conference on
Software” Engineering (ICSE ‚76): IEEE Transactions
on Software Engineering (Vol. SE-2, 4), pp. 308–320.

[10] Liggesmeyer, Peter (2009): Software-Qualität. Testen,
Analysieren und Verifizieren von Software. 2nd Ed.
Heidelberg: Spektrum Akademischer Verlag.

[11] FrontEndART: SourceMeter Project Homepage.
[Online]. Available: https://www.sourcemeter.com.
(Accessed: July 24, 2016).

[12] Oliveira, Marcio F.S.; Redin, Ricardo Miotto; Carro,
Luigi; da Cunha Lamb, Luís; Wagner, Flávio Rech
(2008): “Software Quality Metrics And Their Impact
On Embedded Software.” In: 5th International
Workshop on Model-based Methodologies for
Pervasive and Embedded Software (MOMPES) 2008:
IEEE, pp. 68–77.

[13] Göde, Nils; Hummel, Benjamin; Juergens, Elmar
(2012): “What Clone Coverage Can Tell.” In:
Proceedings of the 6th International Workshop
on Software Clones (IWSC ‚12) (IEEE Computer
Society), pp. 90–91.

[14] hello2morrow GmbH: Sonargraph Homepage.
[Online]. Available: https://www.hello2morrow.com/
doc/sg7/index.html. 2014. (Accessed: July 30, 2016).

[15] Martin, Robert C. (1995): Object Oriented Design
Quality Metrics: An Analysis Of Dependencies. In:
C++ Report (SIGS Publications Group) Software
Metrics and Android Programming (September/
October).

[16] Checkstyle Project: Checkstyle Homepage: [Online].
Available: http://checkstyle.sourceforge.net/index.html
(Accessed: July 29, 2016).

[17] CQSE: Teamscale Homepage. [Online]. Available:
https://www.cqse.eu/en/products/teamscale/features.
(Accessed: July 27, 2016).

BA
VA

RI
A

N
 JO

U
RN

A
L

O
F

A
PP

LI
ED

 S
C

IE
N

C
ES

- 174 -

Peter Faber, Tanja Maier, Stefan Schuster

Prof. Dr. Peter Faber

Peter Faber holds a Diploma degree in Computer Science from the
University of Passau. From the same institution he received his
doctorate on the subject of code optimization in the polyhedron model.
Between 1999 and 2004, he worked as a scientist at GMD –
Forschungszentrum Informationstechnik – and at the University of
Passau, and from 2005 to 2009 as IT consultant and software engineer
at science+computing ag. Since 2009, he has been professor for Media
Technology at Technische Hochschule Deggendorf (THD). Since
2015, he has been the academic head of THD’s Computing Center. In
research and teaching, his activities include programming and code
optimization, in particular graphics and parallel programming, as well
as programming of mobile devices.

Peter Faber erhielt sein Diplom in Informatik von der Universität
Passau. Dort promovierte er auch zum Thema der Optimierung von
Schleifenprogrammen im Polyedermodell (Code optimization in the
polyhedron model).
Zwischen 1999 und 2004 arbeitete er als Wissenschaftler an der GMD
– Forschungszentrum Informationstechnik – und an der Universität
Passau und von 2005 bis 2009 als IT-Consultant und Software-
Engineer bei der science+computing ag. Seit 2009 ist er Professor für
Medientechnik an der Technischen Hochschule Deggendorf (THD),
seit 2015 zudem wissenschaftlicher Leiter des Rechenzentrums
der THD. In Forschung und Lehre ist er aktiv im Bereich der
Programmierung und Codeoptimierung, insbesondere der Grafik-
und Parallelprogrammierung (GPGPU) und der Programmierung
mobiler Geräte.

Kontakt / Contact
 peter.faber@th-deg.de✉

JA
S.bayern

- 175 -

Using Code Metrics for Android Programming

Tanja Maier, B. Eng.

Tanja Maier is a software engineer at Innowerk-IT GmbH, a software
and IT company. She received her Bachelor of Engineering degree
in Media Technology with a focus on Media Computer Science
from Technische Hochschule Deggendorf (THD). She subsequently
enrolled in THD’s Master’s Program Media Technology with an
emphasis on Industrial Multimedia. As a student trainee, she has been
developing software within various software projects while studying
at THD. For her Master‘s thesis, she is examining the role of software
metrics in practical experience.

Tanja Maier ist Software-Engineer bei Innowerk-IT GmbH,
einem Software- und IT-Beratungsunternehmen. An das Studium
der Medientechnik an der Technischen Hochschule Deggendorf
(THD) mit Schwerpunkt Medieninformatik (B. Eng.) schloss
sie das Masterstudium Medientechnik und -produktion an der
THD mit Schwerpunkt Industrielles Multimedia an. Neben dem
Studium arbeitete sie bereits als Werkstudentin in verschiedenen
Softwareprojekten als Software-Entwicklerin. Im Rahmen ihrer Master-
Arbeit betrachtet sie die Rolle von Software-Metriken in der Praxis.

Kontakt / Contact
 tanja.maier@innowerk-it.de✉

Dipl.-Inf. Stefan Schuster

Stefan Schuster received his Diploma degree in Computer Science
from the University of Passau, where he worked on several topics
related to energy generation, such as the Algebraic Oil Project. Within
this project, he developed symbolic-numeric methods to analyze oil
production data. Since December 2014, he has been the responsible for
the development of the Optimized Range Model within the E-WALD
project, the largest demonstration project for electromobility in
Germany.

Sein Informatikstudium absolvierte Stefan Schuster an der Universität
Passau. Als wissenschaftlicher Mitarbeiter arbeitete er dort von 2008
bis 2014 in verschiedenen Projekten an Themen aus dem Bereich
Energiegewinnung. So entwickelte er beispielsweise im Rahmen des
Algebraic Oil Projects symbolisch-numerische Methoden zur Analyse
von Ölproduktionsdaten. Seit Dezember 2014 ist er im E-WALD-
Projekt u.a. für die Umsetzung des Optimierten Reichweitenmodells
verantwortlich.

Kontakt / Contact
 stefan.schuster@th-deg.de✉

