
DEZ 2015 - NO. 1 BAVARIAN
JOURNAL
OF APPLIED SCIENCES®

- 27 -

Performance Measurement of Audit Software Tools
Leistungsbeurteilung von Prüfungssoftware

Georg Herde
Technische Hochschule Deggendorf

Dominik Fischer

Werkzeuge zur Datenanalyse sind eine bekannte Technologie. Aufgrund
der zunehmenden Menge an Daten, die diese Werkzeuge bearbeiten
müssen, wird es immer wichtiger zu wissen, wie effizient diese Werkzeuge
Standardabfragealgorithmen ausführen. Dieser Aufsatz beschreibt die Planung,
Entwicklung und Durchführung eines flexiblen Leistungsmessprojekts. Es
beschreibt die verschiedenen Hardwarekomponenten und Betriebssoftware-
Umgebungen für diejenigen, die mit Performance-Messung zu tun haben. Diese
Entwicklung kann mit verschiedenen Anwendungen, die in der Lage sind,
Batch-Operationen auszuführen, verwendet werden. Leistungstestergebnisse
(zusätzliche Datei) werden vorgestellt und interpretiert.

Data analysis tools are a well-known technology. Due to the increasing amount of
data such tools have to handle, it is becoming more and more important to know how
efficiently these tools can execute standard query algorithms. This paper describes the
planning, development, and execution of a flexible performance measurement project.
It provides information on the different hardware components and operating software
environments to those who want to do performance measurement tests on software.
This development can be used with different applications capable of batch operations.
Performance test results (additional file) will be presented and interpreted.

Big Data, Performance Measurement, Data Analysis Tools, Audit

ABSTRACT

KEYWORDS

 w
w w. JA S . b a y e r n

BAVARIAN JOURN
A

LPEER REVIEW

OF APPLIED SCIENCES

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 28 -

G.Herde, D. Fischer

1. Introduction
Big Data is not a completely new issue. Since
the early days of data processing, people have
had to manage the amount of data with currently
available means [1].

However, the increase—almost explosion—of
data availability in the last few years has also
made it necessary for most companies to dig for
the gold [2] within.

The audit profession is no exception: the need
for software tools to test and check a company’s
data for auditing purposes has been felt for 40
years [3].
Changes in at least three different aspects can
be observed in comparison with previous years.

1. More and more business processes are
purely digital, as in B2B or B2C business.

2. The number and variety of attributes
recorded for each transaction is increasing;
therefore the test procedures are becoming
increasingly complex.

3. Exponential growth in the number of digital
transactions has not only been observed in
big companies.

Auditors have realized that, in order to gain a
deeper understanding of company processes in
terms of audits, digital data analysis is no longer
an option. It has become compulsory.

Many different general-purpose and specific
tools are now available in the audit field.

In a survey on acceptance of digital data analysis
in the audit profession in Germany, Herde/Kohl
[4] found that 76% of internal auditors and 81%
of external auditors use digital data analysis
tools. The most frequently named products
were ACL, Excel, Access, IDEA Monarch,
SPSS, SAS and Statistica, among others. Most
interviewees agreed that digital data analysis
tools are either indispensable or their importance
will increase considerably in the near future [4].
Kaplan [5] obtained similar results in his Survey
report on Data Analysis Software and Auditors.

It will therefore become necessary for the audit
profession to accept available software tools
and applications as a given constant. Defining
the requirements and parameters according to
which software applications can be evaluated
in terms of effectiveness and efficiency [6] will
consequently become more important. Several

general-purpose audit software packages
apart from the Microsoft Office applications
are available on the market and used by audit
professionals.

The more important the use of such applications
becomes, the more people work with
these applications, and the more data these
applications have to handle, the more critical
becomes the question: How efficient are these
applications in analyzing mass data?

When introducing audit software tools, auditors
have to take the efficiency of those products into
consideration.

Apart from the user interface, functionality
and training effort requirement, it would be
interesting to know how much time a software
tool would require to execute a sort or a
classification, or to compute a join between two
tables, which are really basic and recurring tests
in almost every audit procedure.

The question that will be explored in this paper
is:

How do different audit software programs
behave in terms of, e.g. CPU usage and disk
usage, when executing simple audit routines on
millions of data records in different hardware
environments?

The results will indicate the software tool that
uses less resources and consequently takes less
time for auditors to do their jobs.

The test procedure, tools, and parameters
selected in order to answer the question will be
explained next.

2. Planning
Several decisions had to be made at the outset:
the data analysis tools and data operations
(query algorithms) to be tested; the mandatory
parameters to measure; and of course the way in
which the tests should be performed. This paper
explains these steps and includes the decision-
making.

2.1 Selection of the Data Analysis Tools
There are many different tools for digital data
analysis on the market, starting from standard
software like Microsoft Excel all the way up to

ja
s.bayern

- 29 -

high-end solutions from SAP or IBM. For the
purpose of our project, it was important that the
tools fulfil the following requirements:

• are able to compute data of the size of
a five-digit Megabyte file;

• are specifically for data analysis in the audit
profession; and

• are standalone tools.

Standard office tools are automatically
disqualified by these restrictions: Microsoft
Excel can only compute up to “1,048,576 rows”
[7] and Microsoft Access “2 Gigabytes” [8]
of data. If the market is filtered, a long list of
possible data analysis tools results.

“The three most well-known and common
data interrogation packages are …, Audicon
IDEA, ACL and i2. … In addition, there are
other data interrogation packages; for example
CPCP … which runs in ARBUTUS, a spin-
off development, when one of the key ACL
developers left, to set up his own development.”
[9] Due to the fact that IDEA and ACL are two of
the market leaders, an initial decision for these
tools was made. The ARBUTUS tool, a tool
with the same philosophy, but from a different
company, has also been included.

Following an early presentation of our
project in mid-2012, a senior consultant at
“hfp Informationssysteme” contacted us. His
company also develops software to analyze
data for audit professionals that has a different
structure and philosophy to the other three and
is capable of using different database servers in
the background. Since it is also interesting to
test computations with relational databases, the
software “hfp openAnalyzer” in combination
with the Microsoft SQL Server 2012 was added
as the final product to our project.

In conclusion, the four tested data analysis tools
are:

• Caseware IDEA 8.5
• ACL 10
• ARBUTUS Analyzer 5.5
• hfp openAnalyzer v. 2.5b

2.2 Data query algorithms
There is a huge range of specific data selection
and modification procedures within the software
programs. In the case of digital data analysis,
the selection procedures (reading) are more
important than the modification (writing)

procedures, because they occur more often in an
audit procedure. All our tools use a fixed data
set, which is normally extracted from an ERP
system such as SAP. All tests will be driven on
one fixed data set.

There is a very wide range of data selection
procedures, starting from easy row selection
without much inherent logic, through several
aggregation and grouping functions, up to really
complex fraud and double payment scripts
(which could also include data modification
queries to store temporal data).

It was important to test query algorithms that
are used quite frequently and generate similar
results in each software package. These are
very easy, basic operations, but essential for
any further and more complex computation.
They are comparable to the performance
measurement of super computers where you test
how many FLOPS (floating point operations per
second) the computer can compute. The project
thus focuses on simple data selection operations
and not complex data computation algorithms.

Four different data query algorithms have been
tested so far:

• Sort: Order a data set by three different
columns.

• Join: Merge two different data sets with
one primary and one foreign key in the
tables.

• Summarize: Order and group a data set,
and summarize the single groups in a
numeric field.

• Extract: Export a data set to an XML-
structured file and save it on the local disk.

2.3 Performance parameters
“The performance and scalability of a
software system are determined by the various
performance and scalability factors. Those
factors that are affecting the performance
and scalability of a software system most
are classified as the bottlenecks. System
performance counters help capture those
bottlenecks. A performance counter enabled
through a system-monitoring tool is simply a
logical entity that quantitatively represents one
of the aspects of a resource. For example, one
often needs to know:

• How busy the CPUs of a system are
• How much memory is being used by the

application under test

Performance Measurement of Audit Software Tools

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 30 -

G.Herde, D. Fischer

• How busy the disks of a data storage system
are

• … “ [10]

The performance parameters are the parameters
defined to be measured. Surely, the most
important and predicated parameter in the
buying decision is the duration of an operation.
How long does the computation of a function
last? How long will the auditor have to wait
until the operations have been performed?
It is necessary to measure some hardware
parameters in order to analyze the performance
of the algorithms of the different tools. The
following attributes are measured:

• CPU rate;
• amount of written bytes on the storage

drive;
• read bytes on the storage drive; and
• used space in working storage.

2.4 Test requirements
What is required to perform a representable
test? What has to be done before and after a
test? Due to the number of data records and test
algorithms, our tests are very time-intensive,
requiring special arrangements and tasks in order
to maintain a comparable test environment. The
important preconditions and requirements for
our tests are described below.
We are testing different disk technologies
and different working storage capacities, as
well as different audit software with different
operations and of course with different data
sizes. All these tests should run automatically.
Moreover, to maintain a comparable state of
the system after each test run, the next test
should start automatically. Consequently, the
test environment was governed by the following
conditions:

1. Before each test, the operating system has
to be blank and every test run has to have
the same starting conditions.

2. After each test, all generated data from the
analysis tool has to be deleted.

3. No changes are allowed in the initial project
data of the analysis tool and in the analyzed
data set itself.

4. The system has to configure, shut down and
boot itself, without any user interaction.

5. In order to avoid and polish positive and
negative peaks of the measured data, the
test environment should be able to repeat
one given test a specific number of times.

6. It should be possible to generate and store
measurement data over the whole test run.

Performance has to be measured within an
interval of only a few seconds.

2.5 Test Data output
In consideration of these preconditions, a
calculation about the estimated test data results
has been made. The following dimensions have
to be considered in the planning scenario:

• type of disk;
• size of working storage;
• size of data set;
• type of audit software; and
• type of query algorithm.

In order to exclude outliers in the tests, each test
was repeated five times and the median of the
generated test data output was used.
More than 1,440 test runs had to be executed.
The complete execution time was initially
expected to be round about three months. Due to
unexpected performance shortcomings in some
tools, the true execution time was round about
18 months.
More than 200 Megabytes of test results were
generated during these tests.

3. Development of the test
environment

Fulfilling all mentioned requirements and
developing a test environment to perform all the
tests automatically required some research and
development activities. The entire development
took more than 12 months and there is still scope
for improvement to increase the performance
of the test environment. The environment
is, however, robust, produces representative
data results, and can also be used for different
use cases (i.e. it is possible to test software in
different operating systems like Windows XP, 7,
8 with only one configuration).

3.1 The test data sets
As previously mentioned, the target was to test
and stress the audit software using different
query algorithms combined with three different
huge data packages. Due to data security issues,
it was difficult to get real data with the required
huge number of data records. The data sets
were therefore generated using software from
“Red Gate Software Ltd” (http://www.red-gate.
com/). Our table is 512 bytes wide and contains
number, text, binary, and date fields. The
following amounts of data have been generated:

ja
s.bayern

- 31 -

• 7.5 GB (15 million records)
• 15.0 GB (30 million records)
• 22.5 GB (45 million records)

The data sets are big enough to force the
software to use the internal hard disk or the
page files on the hard disk (space for software
when the physically memory is exhausted)
rather than the limited physical working storage
for computation. However, they are not too
big to blow up the execution time of the single
test runs.

3.2 Test process
The main part of the development of our test
environment is the implementation of the strict
test requirements. This is also the most complex
part, cf. the graph on the last page of this article.

The test environment contains different parts
with different responsibilities. On the one hand,
the system has to manage two disks where the
tests will run, under the control of a Windows 7
operating system. An additional disk runs a Linux
environment, which is responsible for changing
the hardware configurations and resetting the
Windows system. Some independent partitions

that store the actual test software, configuration
files, logs of the test runs, test results, one
partition for the project data, and one for a
variety of different disk images, are also located
on this disk. One disk image represents a
software installation on the Windows system for
each different test configuration (i.e., ACL with
a Solid State Disk, another one for ACL with a
magnetic hard disk). There are also several disk
images for the hidden system partition of the
Windows system. Amongst others, the partition
also stores information about the size of the
allocated working storage.

The reason for so many different data sets,
partitions, and systems is derived from the high
degree of flexibility and efficiency that should be
achieved in the test environment. It is very easy
to add additional software, change the project
data, or update the measurement software with
this constellation. The alternative would be to
generate new disk images if there is a change
in a single component. It is also necessary to
understand how the various parts interact with
each other (cf. the numbers in the brackets refer
to the steps on the graph).

A small boot loader (GRUB, Grand Unified
Bootloader) will establish which operating
system will be booted to start the test
environment. Normally, it should boot the
Windows environment. An automatic start-up
script is triggered after the system is booted

(#1). This small script is responsible for starting
the measurement software (#2). This is stored on
the other disk to facilitate updating the software
. If no test is planned, the software starts the
graphical user interface and the system manager
is able to configure the tests and the

Performance Measurement of Audit Software Tools

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 32 -

G.Herde, D. Fischer

analysis software. Otherwise, after a delay of
30 seconds (delay for Windows to finish all
start-up procedures), the software copies all
necessary project data from the single data
partition to the local drive (#3).

The test is performed as soon as the data has been
copied and a measurement of all performance
parameters will be taken every five seconds
(#4). After the test, the results are written to the
database (#5). If a next test run is planned, the
system writes the next hardware and software
configuration to a file and configures the boot
loader to start the Linux system. The system
then restarts automatically (#6).

There is also an automatic start-up script on the
Linux system. This script reads the required
configuration for the next tests (#7). It also
copies the right disk images (e.g., “ACL on
SSD” and “with 8 GB RAM”) (#8) and pastes
it on the particular disk. The old data is deleted
completely (#9). After writing the new state
(#10), the system again reboots the Windows
operating system and the process cycle starts
once again (#11).

The possibility to break this cycle either for
maintenance or to extract the test results
certainly exists, e.g. on each Linux boot, the test
results are copied to a flash drive where they
can be easily extracted during the test routines.
Planning and developing this test environment
took a big part of the project research resources,
but it was worthwhile since the advantages in
performance, usability, and efficiency paid off
immediately.

3.3 Test execution and measurement of
performance parameters
The measurement software on the Windows
system is responsible for two major parts:

a.Measurements of performance parameters
b.Test management and administration

The software is written in C# using the
.NET Framework, a combination with
very comfortable access to all performance
parameters. “Performance Monitoring can
be used to get information about the normal
behavior of applications. Performance
monitoring is a great tool that helps you
understand the workload of the system and
observe changes and trends … Microsoft
Windows has many performance objects,

such as System, Memory, Objects, Process,
Processor, Thread, Cache, and so on. Each of
these objects has many counts to monitor.” [11]
The project data is stored in a simple SQLite
database. “SQLite is different from most other
modern SQL databases in the sense that its
primary goal is to be simple. SQLite strives
to be simple, even if it leads to occasional
inefficient implementations of some features.
It is simple to maintain, customize, operate,
administer, and embed in C applications.” [12]

3.4 The test environment
The test environment runs on a desktop personal
computer (PC), which has been modified and
configured for our measurement software.
The test PC consequently cannot be used as a
normal office PC.

All the different hardware features that should
be tested have been implemented in the test
environment. Besides the hard disk drive
(HDD) for the Linux system and the data pool,
a solid-state disk (SSD) and another HDD for
the Windows operating systems have been
installed. The relevant system specifications
are:

Type Description
CPU Intel Core 2 Duo E8300,

2833 MHz (8.5 x 333)

Motherboard HP Compaq dc5800

RAM 4 x GB DDR2-800

1st Windows Disk Samsung SSD 128GB

2nd Windows Disk ST3160815AS ATA Device 160GB

Linux disk Western Digital 500GB

There are many more recent hardware
components available on the market, but the
hardware specifications are currently not
a critical point—testing different CPUs or
motherboards would extend the project far
too much. Furthermore, our intention is to
test with an average, available, and not too
expensive system that could be used by any
average end user. The results would not be that
representative if the tests were executed on a
high-end system available to only a minority of
end users.

No network connection is available on the
system in order to avoid any software update
or other requests. Downloading and installing
software, e.g. Windows updates, may affect
system performance and consequently the
measurements.

ja
s.bayern

- 33 -

A very special feature of our test environment is
simulating different hardware settings. It is not
necessary to physically change the hardware
settings, e.g. by plugging in more or less
memory or the other disk. The test environment
manages everything itself, guaranteeing
maximum flexibility and automation.

4. Analysis
4.1 Validation
The result data sets had to be validated in terms
of quantity and quality before further analysis.
The quantity of database entries was first
checked: the expected quantity was calculated
and compared to the actual results in the
database. Most test runs have a completeness
rate of more than 98%. Furthermore, the logs
were checked for error messages or exceptions
during the test runs. Any identified unexpected
problem or interruption had to be solved before
the test was repeated.

4.2 Classification
Since reading or analyzing the measurement
data is no simple matter, some procedures have
been developed to automatically edit the data
for further analysis. As previously mentioned,
five executions of the same test were made for

each test configuration. The median of each
test run was first identified in order to eliminate
negative or positive outliers of these runs from
the analysis.

The test results were edited for better
computation in the later visualization process.
The original result table contains unformatted
numbers and absolute date values (the creation
date of the measurement record). After editing,
all numbers are formatted and the date and time
values are relative to the beginning of the test
(seconds from the beginning of the test run).

4.3 Visualization
The main problem in the analysis is visualizing
the different dimensions: showing the relation
between the different factors and how they
influence the performance of the different
software packages.
A Python script generates a detailed PDF
document containing visualized data by query
algorithm and data size. It offers a fair overview.
This script ultimately generated 57 pages with
189 different charts.

Figure 1: Extract with 15 million rows – Overview

2

Performance Measurement of Audit Software Tools

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 34 -

G.Herde, D. Fischer

Figure 2: Extract with 15 million rows – CPU usage

3

Figure 3: Extract with 15 million rows – Process Working Storage

4

Figure 4: Extract with 15 million rows – OS Working Storage

5

ja
s.bayern

- 35 -

5. Results
The most significant insights will be described
in this section. An explanation for the proper
understanding of the results will be followed by
the presentation of the results.

5.1 Plot explanation
A short introduction on how to read the result
plots is helpful. A 57-page document containing
all results as single plots can be downlaoded
from: jas.bayern/data/herde/. One particular
test involving one of the query algorithm types
and one of the three data sets, e.g., “EXTRACT
with 15,000,000 rows”, alone covers six pages.

A bar chart on the first page of each test provides
an overview. Each color represents a specific
hardware configuration. The tests were each
performed with six different configurations:
from 2 GB to 8 GB working storage with an
SSD and an HDD. The x-axis represents the
duration of the test run in minutes, while the
y-axis shows each test run grouped by the four
tools.

The subsequent five pages provide a detailed
view of each of the five performance parameters:
CPU usage, process working storage, OS

Figure 6: Extract with 15 million rows – Disk Write Activity

7

The whole Document with all figures (Figure 1 to 54) and with addtional
information can be downlaoded from: jas.bayern/data/herde/

Figure 5: Extract with 15 million rows – Disk Read Activity

6

Performance Measurement of Audit Software Tools

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 36 -

G.Herde, D. Fischer

working storage, and disk frequency for read
and write activities. There are four plots per
page, one for each tool. Each plot comprises
three blue lines, representing the test runs with
the HDD, and three red lines, representing
those for the SSD. The x-axis is the value of the
performance parameter and the y-axis is the time
in minutes (in a logarithmic scale). The numbers
in the brackets in the legend are the duration
described in minutes. Tests with less than 50%
test results are marked with two exclamation
points enclosing the percentage of the expected
test results (e.g., “!28.0!” indicates that 28% of
the expected results could be measured).
Use the attached result document to find the
figures referenced in the following paragraphs!

5.2 Data Extraction
• The two leading tools for the data

extraction command are Arbutus and the
hfp openAnalyzer (ref. fig. 1, fig. 7, fig. 13).

• Results specific to the SSD indicate that
Arbutus is the fastest tool, followed by hfp,
IDEA, and ACL.

• Expanding the physical working storage
is only a significant advantage for IDEA
running on an HDD.

• The CPU has a much higher workload with
the SSD, but only one of two cores is used
(ref. fig. 14).

• Hfp uses most of the available working
storage, which is no major issue for the
EXTRACT command. The high RAM
workload in the case of Arbutus using
the HDD and 8 GB RAM is noticeable. It
seems that the software tries to use most of
the available space (ref. fig. 16).

• Analogous to the ranking in duration is
the behavior of read and write operations.
Arbutus reads/writes the most data per
second, followed by hfp, ACL, and IDEA.
It is noticeable that in the cases of ACL
and IDEA, the possible read/write-speed of
the SSD is not fully attained: an imaginary
border appears at around 50 MB per second
(ref. fig. 17f).

5.3 Joining tables
• ACL, Arbutus, and hfp are at the same

level at the beginning of the HDD test runs.
However, hfp later requires nearly 100%
more time for the test execution with the
two bigger data sets. IDEA has massive
problems using the HDD (ref. fig. 19, fig. 25,
fig. 31). The execution time is unreasonably
long. It is immediately apparent that more

RAM speeds up execution. A pre-indexed
data set generates no significant advantage

• In the SSD test runs, IDEA came in first on
the smaller data sets. However, with a data
set of 30 million rows, Arbutus and ACL are
the two leading tools. Hfp cannot generate
speed improvements using the SSD. This
is due to the low disk activity in the join
operation.

• There is no permanent CPU load during
the join operation. It is however interesting
that testing Arbutus in combination with
an SSD results in usage of the second CPU
core (ref. fig. 32).

• ACL and Arbutus seem to have an internal
working storage limitation. The limitation
in the case of ACL depends on the size of
the RAM: when more RAM is available the
limitation is not as strict as when less RAM
is available. The working storage has a
steady load across the different tools. Only
IDEA shows a less high RAM workload
(ref. fig. 34).

• ACL exhibits the highest read/write activity
on the disk, followed by Arbutus. In the
case of Arbutus, there is a big difference
between the HDD and SSD test runs. Hfp
and IDEA don’t have a very high read/write
rate (ref. fig. 35f.).

5.4 Sorting data
• Execution time with the HDD test runs

can be interpreted as follows: ACL and
Arbutus are the two fastest tools, also
demonstrating no significant differences
with regard to RAM size, and IDEA is in
third place, followed by hfp (ref. fig. 37,
fig 43, fig. 49). In the case of the latter two
tools, differences are evident when using
bigger working storage. A conjecture is that
ACL and Arbutus perform their operations
primarily on the disk, while hfp and IDEA
perform them in the working storage (ref.
fig. 49).

• In the SSD test runs, ACL and Arbutus are
also the fastest tools, followed closely by
IDEA. It is conspicuous that hfp leads with
the 15 million rows big data set and is later
overtaken by the other tools (ref. fig. 37, fig
43, fig. 49). Using a bigger working storage
makes no big difference in the case of all
tools.

• Once again, Arbutus is the only software
that uses the second CPU core (mainly
during the SSD test runs). ACL has a higher
CPU workload while hfp rarely uses

ja
s.bayern

- 37 -

• the processer. There are too little IDEA
test results to make a qualified statement
(ref. fig. 50).

• It is again noticeable that ACL and
Arbutus again use all the limitated internal
working storage range. Also, hfp has a
consistently high RAM workload. Only
IDEA has a noticeably low RAM workload
(ref. fig. 51f.).

• ACL has high disk usage, especially with the
SSD test runs. Arbutus, too, demonstrates
strong disk usage. IDEA and hfp both use
the disk with a lower read/write rate (ref.
fig. 53f.).

5.5 Summarizing data
The test runs for the summarize operation will
not be reviewed. Test results currently are not
satisfying, hence additional research will be
necessary.

6. Summary
Evaluating data analysis software tools
according to their performance by stressing the
software with huge amounts of data and different
test algorithms, using different hardware
configurations under comparable and repeatable
system environments is a big challenge. Every
single part of the testing environment had to
be checked in order to create proper, valid, and
replicable results.

Clear differences between specific data analysis
tools when performing standard data query
algorithms have been identified. Stressing the
tools with a larger amount of data provides
new insights: some tools could handle the data
without greatly reduced performance, while
other tools had significant problems performing
some of the operations. The results have
been accepted and reviewed by the software
developers of this particular company.

This robust and flexible test environment that
produces clean measurements and can easily
be adapted to new requirements such as other
software tools, extended data sets, and other
hardware or operating system configurations.

It is planned to continue the software tests of
data analysis tools. It is important to evaluate
not only the technical performance. Human
interaction with the tool is just as important.

7. References
[1] D. Weinberger, Too big to know: Rethinking

knowledge now that the facts aren‘t the facts, experts
are everywhere, and the smartest person in the room is
the room. New York: Basic Books, 2011.

[2] K. Cukier, “Data, data everywhe,” The Economist,
2010.

[3] H. J. Will, “Computer-based auditing: Part I:
Man-machine auditing,” vol. 100, pp. 29–34, 1972.

[4] G. Herde and A. Kohl, “Umfrage zur Akzeptanz der
digitalen Prüfungsunterstützung: (‘Survey Report on
the acceptance of digital audit support in Germany’),”
in Compliance in digitaler Prüfung und Revision:
Proceeding of the 7th Deggendorfer Forum of digital
data analysis, Berlin: Erich Schmidt Verlag, pp. 69–83.

[5] J. Kaplan, AuditNet® Survey report on Data Analysis
Software and Auditors. Available: https://www.
surveymonkey.com/sr.aspx?sm=V00IhrwMsa6RfD
hex h3mJTuglcfIx3nBUYOblnLmJUc_3d.

[6] G. Herde and E. R. Töller, “Zukunftsorientierte
Analysesoftware: Anforderungen und Parameter:
(‚Future-oriented analytical software: Requirements
and parameters‘),” in Compliance in digitaler Prüfung
und Revision: Proceeding of the 7th Deggendorfer
Forum of digital data analysis, Berlin: Erich Schmidt
Verlag, pp. 85–103.

[7] J. Walkenbach, Excel 2013 bible. Indianapolis: Wiley,
2013.

[8] M. MacDonald, Access 2013: The missing manual, 1st
ed. Sebastopol, CA: O‘Reilly, 2013.

[9] P. Tickner, How to be a successful frauditor: A practical
guide to investigating fraud in the workplace for
internal auditors and managers. Chichester: Wiley,
2010.

[10] H. H. Liu, Software performance and scalability: A
quantitative approach. Hoboken, N.J.: John Wiley &
Sons, 2009.

[11] C. Nagel, Evjen, B. Glynn, J, M. Skinner, and K.
Watson, Professional C♯ 2008. Indianapolis, IN: Wiley
Pub, 2008.

[12] H. Sibsanker, Inside SQLite: O’Reilly Media, 2007.

Performance Measurement of Audit Software Tools

Ba
va

ri
a

n
 Jo

u
rn

a
l

o
f

a
pp

li
ed

 S
c

ie
n

c
eS

- 38 -

G.Herde, D. Fischer

Prof. Dr. Georg Herde
Prof. Dr. Georg Herde ist Professor an der Technischen Hochschule in
Deggendorf und dort im Studiengang Wirtschaftsinformatik tätig. Vor
seiner Berufung an die THD promovierte er 1992 an der Universität
Bamberg und arbeitete mehrere Jahre im Bereich der Wirtschaftsprüfung,
Steuer- und Unternehmensberatung.

Schwerpunkt seiner Forschungstätigkeit liegt in der Datenanalyse
betrieblicher Massendaten für die prüfenden Berufe (Wirtschaftsprüfer,
Steuerberater, Betriebsprüfer, …). Er gründete das „Deggendorfer Forum
zur digitalen Datenanalyse, das seit 2005 mehr als 16 Veranstaltungen im
gesamten Bundesgebiet mit nationalen und internationalen Referenten
durchführte. Insgesamt wurden bisher 11 Tagungsbände im Rahmen
dieser Veranstaltungsreihe veröffentlicht.

Über dieses Thema publizierte er eine Reihe von Aufsätzen
(vgl. https://pmit-ext.th-deg.de/publikationen/index.
php?suche=Herde+Georg#ergebnis) und hielt Vorträge auf nationalen
und internationalen Konferenzen, die ihn u.a. nach Japan, Kanada und
zu einer Gastprofessur an der Chung-Cheng Universität in Taiwan
geführt haben.

Prof. Dr. Georg Herde is a professor of business informatics at Deggendorf
Institute of Technology (DIT). Before his appointment to DIT he was
awarded a doctorate at Bamberg University in 1992 and was a professional
in auditing, tax and management consultancy for several years.

His research focus lies in the analysis of business bulk data for the
auditing profession (auditors, tax consultants, tax auditors…). He is the
founder of the ‘Deggendorf Forum of Digital Data Analysis’ under the
auspices of which more than 16 meetings have taken place throughout
Germany since 2005, hosting national and international speakers. As
many as 11 conference transcripts have been published ever since.

Prof. Dr. Herde has published a whole range of articles
(please see https://pmit-ext.th-deg.de/publikationen/index.
php?suche=Herde+Georg#ergebnis) on this subject and has presented
numerous lectures at national and international conferences, taking him
to Japan and Canada, amongst other countries. Moreover, he held a
guest professorship at National Chung Cheng University in Taiwan.

Kontakt / Contact
 georg.herde@th-deg.de✉

ja
s.bayern

- 39 -

Dominik Fischer
Dominik Fischer studiert Data and Knowledge Engineering
(M.Sc.) an der Universität Magdeburg. Zuvor absolvierte er eine
Ausbildung zum Fachinformatiker für Anwendungsentwicklung
und sammelte drei Jahre lang Erfahrungen in einer Internet-
Agentur. Im Frühling 2015 schloss er an der TH Deggendorf das
Studium der Wirtschaftsinformatik (B.Sc.) ab. Fischer hat zudem
internationale Erfahrungen in Chile, Taiwan, Finnland und auf
den Philippinen gewinnen können. Während seiner akademischen
Ausbildung entwickelte sich sein Interesse an dem weiten Feld der
Datenanalyse. Daher ist es naheliegend, dass er sich auch in seinen
zukünftigen Forschungsarbeiten auf dieses Feld konzentrieren will.

Dominik Fischer studies Data and Knowledge Engineering (M.Sc.)
at the University of Magdeburg. Before, he did an apprenticeship
as a specialized software developer and gained three years of work
experience in an internet agency. In spring 2015, he graduated in
business informatics (B.Sc.) at Deggendorf Institute of Technology.
Fischer has also gained international experience in Chile, Taiwan,
Finland and the Philippines. During his studies he developed a strong
interest in the wide field of data analysis, which makes it obvious
that he wants to concentrate his future research work on this field.

Kontakt / Contact
 dominik.fischer@st.ovgu.de✉

Performance Measurement of Audit Software Tools

